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Abstract

Guided by baryon chiral perturbation theory, the effective field theory for pions and baryons
in QCD, we construct the leading orders of a low-energy effective field theory for magnons
and holes in an antiferromagnet on the honeycomb lattice. Based on a careful symmetry
analysis of the underlying microscopic Hubbard Hamiltonian and the fact that doped holes
reside in pockets centered around lattice momenta (0,±4π/(3

√
3a)), we systematically derive

the low-energy degrees of freedom and their transformation behaviour under the symmetries
of the Hubbard model. In order to couple the magnons to the holes in the effective field
theory, we use a non-linear realisation of the global spin symmetry. The leading order effec-
tive Lagrangian is then constructed by demanding that it must have the same symmetries
as the Hubbard model. As an application of the effective field theory, we afterwards discuss
possible spiral phases of the staggered magnetisation in an antiferromagnet on the honeycomb
lattice containing a homogeneously distributed, small amount of doped holes. The effective
field theory reveals that, depending on the values of the low-energy constants, the staggered
magnetisation is either in a homogeneous or in a spiral phase where the spiral has no preferred
spatial propagation direction.

As an intermediate step, we diagonalise the Hubbard Hamiltonian in the zero-coupling limit
to derive the dispersion relation of free, massless Dirac fermions. Expanding the dispersion
relation for small momenta allows us to determine an exact expression for the fermion velocity.
The construction of the leading order effective Lagrangian for free fermions concludes this
excursion.
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Chapter 1

Introduction

The phenomenon of low-temperature superconductivity was discovered in the year 1911 by
Heike Kammerlingh Onnes and Gilles Holst. While studying the resistance of solid mercury
at low temperatures, Onnes and Holst observed that resistance suddenly disappears when
the probe is cooled below 4.2 K. In 1957, John Bardeen, Leon N. Cooper, and John R.
Schrieffer (BCS) proposed the microscopic theory of low-temperature superconductivity. Ac-
cording to BCS, superconductivity at low temperatures emerges from two-electron bound
states in which the electron pairs feature opposite momenta close to the Fermi surface and
zero total spin. These so-called Cooper pairs are bound by a long-ranged attractive force
mediated by phonons which overcomes the short-ranged screened Coulomb repulsion. Low-
temperature superconductors exhibit a critical temperature of a few Kelvin below which
the Cooper pair formation is possible. Johannes G. Bednorz and Karl A. Müller, however,
observed in 1986 that Lanthanum-Barium-Copperoxid (La1,85Ba0,15CuO4) turns into the su-
perconducting phase above 30 K [1]. This was the starting point for the still very rich research
field of high-temperature superconductivity. Because it is assumed that the coupling due to
phonons is too weak to completely explain bound fermion pairs in high-temperature super-
conductors (HTSC), the BCS theory can not be used to describe materials with a high critical
temperature.

Most HTSC are hole- or electron-doped ceramic materials with layers of CuO2 spaced by
insulating layers of other atoms serving as a charge reservoir. Doping can be obtained by
substituting ions in these insulating layers with the effect that the number of electrons in the
copper-oxide layers changes. In an undoped system, a CuO2 layer has on average one valence-
electron per lattice site (half-filling). A material is called electron-doped when additional
electrons enter the half-filled copper-oxide layers through doping. On the other hand, the
charge reservoir in the insulating layers can pick up electrons from the crystal such that there
is an electron vacancy or, equivalently, a hole in the CuO2 plane. At zero or at least very
low doping, the copper-oxide layers show, in a certain temperature range, the characteristic
long-range order structure of an antiferromagnet. In real materials, these layers are weakly
coupled. Therefore, the correlation length remains infinite also for non-zero temperature T
and thus the antiferromagnetic phase is realised for T > 0. Fig. 1.1 shows a schematic phase
diagram for Nd2−xCexCuO4 and La2−xSrxCuO4, which both represents HTSC on a square
lattice. However, as first suggested by Philip W. Anderson in [2], due to the weak coupling
of the CuO2 layers, the relevant physics of HTSC is reduced to a two-dimensional single
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2 Chapter 1. Introduction

copper-oxide plane. It is thus legitimate to completely neglect the inter-layer coupling for a
theoretical treatment of HTSC. However, one should keep in mind that Fig. 1.1 then no longer
applies, since the correlation length of an exactly two-dimensional antiferromagnet gets finite
as soon as T > 0, i.e. the antiferromagnetic phase exists only for T = 0. An antiferromagnet
turns into the superconducting phase as soon as the doping concentration is high enough. The
newest generation of HTSC are iron-based. Instead of the CuO2 planes, these materials are
based on layers consisting of iron and arsenic [3]. Although this thesis is ultimately motivated
by high-temperature superconductivity, we assume that only a fundamental understanding of
HTSC in the antiferromagnetic phase can be the key to access a correct theoretical description
of high-temperature superconductivity.

Figure 1.1: Schematic phase diagram of electron- (Nd2−xCexCuO4) and hole-doped
(La2−xSrxCuO4) cuprates illustrating the antiferromagnetic (AF) and superconducting (SC)
phase in dependence of temperature and doping concentration [4].

In this thesis we focus on high-temperature superconductors with a honeycomb lattice in
the antiferromagnetic phase. A HTSC on the honeycomb lattice is the dehydrated variant
of NaxCoO2·yH2O at x = 1/3. The relevant layers now consist of CoO2 instead of CuO2.
Nevertheless, it is assumed that the underlying physics is similar to the copper oxides [5].
The structure of this material is depicted in Fig. 1.2. A further antiferromagnetic material on
a honeycomb lattice is InCu2/3V1/3O3. Because it seems that the important honeycomb lat-
tice materials are hole-doped, we restrict all investigations in this thesis to lightly hole-doped
antiferromagnets.

Appropriate models describing antiferromagnetism are the Hubbard or the t-J model. They
are considered to be minimal models which contain the physics of itinerant spin-1/2 fermions
on a two-dimensional lattice. These models further include on-site Coulomb repulsion (Hub-
bard model) and a nearest-neighbour spin-coupling (t-J model). Both of these models can
be doped with fermions, but the t-J model allows only hole doping. However, because of
their simplicity, the Hubbard as well as the t-J Hamiltonian neglect some physical aspects of
real materials. Since the formation of a crystal lattice is not included in these microscopic
descriptions, the phonons, as the Goldstone bosons of the spontaneously broken translation
invariance, are not included in the Hubbard and the t-J model. Moreover, impurities due to
doping and the already mentioned interlayer interaction are not captured by the two Hamil-
tonians. However, despite their various simplifications, these models are perfectly suited to
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Figure 1.2: Structural views of Na0.7CoO2 (left) and NaxCoO2·yH2O (right), where Na and
H2O sites are partially occupied [5].

describe a doped antiferromagnet in two dimensions. The main problem is that both models
in general can not be solved analytically and numerical simulations, as soon as more than one
doped hole or electron is included, suffer from a very severe fermion sign problem. Further,
the exact antiferromagnetic ground state of these Hamiltonians is not known. This motivates
the construction of a low-energy effective field theory for magnons and holes in an antiferro-
magnet on the honeycomb lattice. With this tool in our hand, we are then able to describe
the low-energy physics of the Hubbard and the t-J model including a small amount of doped
holes in a very efficient manner.

Let us first review some general facts about low-energy effective field theories. The basis of a
low-energy effective field theory is a microscopic model (fundamental theory) describing the
physics of a given system over a wide range in energy. In the majority of cases, these models
are thus not solvable analytically. However, as long as one is interested only in the physics
at low energies, there is a loophole. In this case one must identify all relevant degrees of
freedom dominating the physics at low energies, i.e. low temperatures. Only these degrees
of freedom are then used to construct a low-energy effective field theory (or simply effective
field theory). As a consequence, the effective field theory describes the low-energy physics
of the system in a much more economic or, in accordance with its name, effective manner
than the fundamental theory, which at low energies also incorporates the degrees of freedom
relevant for the high-energy regime. Let us now explain in detail how an effective field theory
is constructed by considering the statement of Weinberg in [6] that once the effective degrees
of freedom are identified, the most general effective Lagrangian, satisfying all fundamental
principles of quantum field theory, has to be invariant under all symmetries of the underlying
microscopic model. If one intends to construct an effective Lagrangian, one therefore first
determines all the symmetries of the fundamental microscopic theory. As a second step, the
low-energy degrees of freedom and their transformation behaviour under the symmetries of
the underlying Hamiltonian are worked out. Finally, the low-energy effective Lagrangian is
constructed as a systematic derivative expansion containing all terms of a certain order, ex-
pressed in the relevant effective degrees of freedom, which are invariant under all symmetries of
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the microscopic model. Since derivatives in position space correspond to momenta in Fourier
space, the low-energy behaviour of a system is suitably described by the leading order terms
in the effective Lagrangian involving as few derivatives as possible. In the end, the (leading
order) effective Lagrangian enters the path integral through a Euclidean action. It should be
emphasised that the effective field theory is completely equivalent to the microscopic theory
at low temperatures. Information about the high-energy regime of the fundamental theory is
incorporated in the effective field theory through so-called low-energy constants. Each term
in the effective Lagrangian is multiplied with a low-energy constant, which determines the
coupling strength of the corresponding low-energy interaction process. However, within the
scope of the effective field theory it is not possible to determine the numerical values of these
constants. The values of the low-energy constants can be fixed by the use of a matching
calculation. Such a procedure is realised by calculating a certain process, which includes the
low-energy constant to be determined, in the framework of the effective field theory. On
the other hand, the same process is investigated within the microscopic theory, e.g. with a
Monte Carlo simulation. By comparing both predictions, one is then able to fix the value of
the low-energy constant which itself depends on a parameter of the microscopic Hamiltonian.
The effective field theory is insensitive to the details of the microscopic model and there-
fore is able to represent a whole class of microscopic theories as long as they share the same
symmetries. However, the numerical values of the low-energy constants are model-dependent.

It is possible that a system at low temperature exhibits a spontaneously broken global sym-
metry. In this case, Goldstone’s theorem predicts the existence of spin- and massless particles
known as Goldstone bosons. Since these particles are massless, they govern the low-energy
physics of the system and must therefore be considered a relevant low-energy degree of freedom
although they do not appear as fundamental degrees of freedom in the microscopic model.
The effective Lagrangian must thus include the description of the Goldstone bosons.

The most prominent example of a strongly coupled and thus hardly solvable fundamental
theory is quantum chromodynamics (QCD), which describes the strong interaction between
quarks and gluons. Assuming the quarks to be massless, QCD shows a spontaneous symmetry
breakdown of the global SU(2)L⊗SU(2)R chiral symmetry to the isospin subgroup SU(2)L=R

at low energies. The corresponding Goldstone bosons are the three pions π+, π0, and π−,
which are dominating the low-energy physics of QCD. 1 Chiral perturbation theory (χPT), a
systematic low-energy effective field theory for the pionic sector of QCD, was formulated in [7]
by Jürg Gasser and Heiri Leutwyler after preparatory work in [6,8]. However, in addition to
the pions, the particle spectrum of QCD also contains massive baryons. Baryon chiral pertur-
bation theory (BχPT) is the corresponding low-energy effective field theory which describes
pions as well as baryons [9–13]. Due to baryon number (B) conservation one can investigate
the pion sector B = 0 and the baryon sector B 6= 0 independently. By the use of BχPT, the
low-energy physics of QCD is by far more easily accessible than by solving the underlying
strongly coupled microscopic theory.

Quantum antiferromagnets are systems in which the global SU(2)s spin symmetry is spon-

1To be exact: In reality the quarks are not exactly massless and therefore the pions pick up a small mass.
However, since the pions are still the lightest particles in the spectrum, they dominate the low-energy physics
anyhow.



5

taneously broken down to U(1)s. The resulting Goldstone bosons are the magnons, which
thus dominate the low-energy physics of an undoped antiferromagnet. In analogy to χPT,
we formulate in this thesis a low-energy effective field theory for magnons in an antiferromag-
net on the honeycomb lattice based on symmetry considerations. The leading order effective
Lagrangian is constructed with the magnon field as the relevant degree of freedom and is
completely defined by the two low-energy constants ρs (spin stiffness) and c (magnon veloc-
ity). However, since we are finally interested in the low-energy dynamics of a hole-doped
antiferromagnet, the pure magnon theory must be extended by also including holes in the
effective description. The guideline for this extension is given by BχPT, particularly with
regard to the non-linear realisation of the global SU(2)s symmetry as a local symmetry in
the unbroken subgroup U(1)s which allows us to couple the magnons to the holes in the ef-
fective Lagrangain. As baryon number is a conserved quantity in QCD, the fermion number
Q is also conserved in the antiferromagnetic phase. We are therefore led to investigate the
low-energy physics in each fermion number sector independently. The pure magnon sector
(Q = 0) then corresponds to the pure pion sector in the QCD framework and, as soon as one
hole is included (Q = −1), we enter the analogue of the baryon sector of QCD. An effective
field theory for magnons and doped holes (electrons) in an antiferromagnet on the square
lattice has been worked out in [14] ([15]).

The microscopic starting point for the effective field theory including magnons and doped
holes is the strongly coupled Hubbard model, which we assume to be a valid model describ-
ing antiferromagnetism. By the use of numerical simulations it has been shown that the
Hubbard Hamiltonian indeed reveals spontaneous SU(2)s → U(1)s breaking. The Hubbard
model is invariant under the discrete symmetries of the honeycomb lattice as well as under the
global spin symmetry SU(2)s and the fermion number symmetry U(1)Q. As the construction
of a low-energy effective field theory demands, the final effective Lagrangian for magnons
and holes is invariant under all symmetries of the Hubbard model. The transformation be-
haviour of the effective fields under the various symmetries, and thus the final form of the
effective Lagrangian, depends on where in momentum space doped holes occur. Numerical
simulations in [16] have shown that holes reside in pockets centered around lattice momenta
(0,±4π/(3

√
3a)) where a denotes a lattice spacing. In fact, the locations of the pockets must

be taken into account while identifying the effective degrees of freedom for holes. The energy
scale of the Hubbard model is determined by the parameters t and U . The energy scale of
the effective field theory, however, is set by the low-energy constants, which itself depend on
the parameters of the Hubbard model. Therefore, the effective field theory is only valid for
energies which are small compared to a low-energy constant like ρs.

It is an interesting question to ask whether the low-energy effective field theory for magnons
and holes can also be used to describe materials in the high-temperature superconducting
phase. In this phase, antiferromagnetism ceases to exist and thus SU(2)s is no longer spon-
taneously broken. The SU(2)s → U(1)s breakdown, however, is a key ingredient for the
construction of the effective field theory. Therefore, a systematic construction according to
this thesis is no longer possible. On the other hand, as long as the magnons, now with a finite
correlation length, and the holes, with the index structure of the antiferromagnetic phase,
still remain the relevant degrees of freedom, the effective field theory can be applied to the
high-temperature superconducting phase.
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Once the effective field theory is constructed, it is applicable to various low-energy phenomena
hardly accessible in the framework of the microscopic theory. In this thesis, as an example, we
investigate possible spiral phases of the staggered magnetisation in an antiferromagnet on the
honeycomb lattice with a small amount of homogeneously doped holes. The corresponding
results are obtained by the use of a variational calculation and are published in [17]. Shraiman
and Siggia first introduced the idea that a spiral phase can be a potential ground state of
a doped antiferromagnet even at arbitrarily small doping [18]. There are various theoretical
descriptions showing that the spiral phase is indeed a stable configuration for low-doped anti-
ferromagnets [19–35]. Spiral phases for doped antiferromagnets on the square lattice were first
investigated within the framework of an effective field theory in [36,37]. In [38], the influence
of a periodic and piecewise constant potential on possible spiral configurations was worked out.

This thesis emerged from a close collaboration with Marcel Wirz. Besides the same construc-
tion of the effective field theory for magnons and holes, the thesis of Marcel Wirz contains,
as a further application of the effective field theory, a detailed discussion of magnon induced
two-hole bound states [39]. Two-hole bound states from an effective field theory for magnons
and holes in an antiferromagnet on the square lattice have been investigated in [14,40].



Part I

Systematic low-energy effective field
theory for magnons and holes in an
antiferromagnet on the honeycomb

lattice
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Chapter 2

Properties of the honeycomb lattice

Before discussing concrete microscopic models for antiferromagnetism, we first of all will
present the symmetry properties of the underlying lattice. On this level of investigation we
consider the honeycomb lattice as an infinite extended empty lattice without any physical
objects on its sites. In chapter 3 we will then show that the microscopic models are indeed
invariant under the discrete symmetries of the honeycomb lattice.

2.1 A bipartite non-Bravais lattice

To show that the honeycomb lattice features a two-dimensional non-Bravais lattice structure,
let us first review a definition of a Bravais lattice. According to [41] a Bravais lattice is an
infinite array of discrete points with an arrangement and orientation that appears exactly the
same, from whichever of the points the array is viewed. This is not the case for the adjacent
points A and B in Fig. 2.1. The orientation of the nearest neighbour sites from point B
with respect to the nearest neighbour sites of point A is rotated by 180 degrees. In fact, the
honeycomb lattice is a superposition of two triangular Bravais sub-lattices A and B, where
we choose the primitive lattice vectors

a1 =
(

3
2a,

√
3

2 a
)
, a2 =

(
0,
√

3a
)
, (2.1)

with a denoting the distance between two neighbouring sites, as basis vectors of sub-lattice
A and B. Since the honeycomb lattice can be decomposed into a disjoint union of two sub-
lattices A and B, where each lattice site on A has only nearest neighbours on sublattice B and
vice versa, it belongs to the class of bipartite lattices. Obviously, the coordination number z
of the honeycomb lattice is three.1

Since the honeycomb lattice itself is not a Bravais lattice, we are led to derive its Brillouin
zone by constructing the Brillouin zones of the underlying triangular sublattices A and B.
These two Brillouin zones are identical since the sublattices are spanned by the same primitive
vectors of Eq. (2.1). We calculate the basis vectors gi of the reciprocal lattice by means of
Eq. (2.1) and the Laue condition

1Due to the fact that on the honeycomb lattice z is smaller than the coordination number on the square
lattice (z = 4), deviations in numerical results for various low-energy constants between these two lattices can
be explained. This will be discussed in section 5.1.
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10 Chapter 2. Properties of the honeycomb lattice

a1

a2

x1

x2

Figure 2.1: The honeycomb lattice with its two sublattices A (�), B (�), and the corresponding
primitive lattice vectors a1, a2.

ai · gj = 2πδij , i,j ∈ {1, 2}. (2.2)

This implies

g1 =
(

4π
3a , 0

)
, g2 =

(
−2π

3a ,
2π√
3a

)
. (2.3)

Fig. 2.2 shows that the first Brillouin zone of the honeycomb lattice is again a hexagon, how-
ever, rotated by an angle of 30 degrees with respect to the hexagon in coordinate space. Note,
that the resulting Brillouin zone is a superposition of the Brillouin zones of sublattice A and
sublattice B and is therefore doubly covered. A state in the Brillouin zone can therefore be
occupied by two fermions with the same spin direction under the constraint that one of the
two fermions is located on A and the other fermion on B. Thus, beside spin orientation and
momentum, the sublattice indices A and B become additional quantum numbers.

An electron or a hole with a certain momentum k behaves exactly like an electron (hole) with
momentum k′ as long as the difference between k and k′ is equal to a reciprocal lattice vector.
For all momentum dependent quantities it is therefore sufficient to consider only the momenta
in the first Brillouin zone. The six corners of the first Brillouin zone from the honeycomb
lattice are given by the coordinates

k1 =
(

2π
3a ,

2π
3
√

3a

)
, k2 =

(
0, 4π

3
√

3a

)
, k3 =

(
−2π

3a ,
2π

3
√

3a

)
,

k4 =
(
−2π

3a ,− 2π
3
√

3a

)
, k5 =

(
0,− 4π

3
√

3a

)
, k6 =

(
2π
3a ,− 2π

3
√

3a

)
. (2.4)
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g1

g2

Figure 2.2: The reciprocal lattice of the honeycomb lattice and the corresponding first Brillouin
zone.

From these six corners, only two points form a set of inequivalent points (Fig. 2.3). All the
other sites of the reciprocal lattice are then periodic copies of these two inequivalent points.
The area of the first Brillouin zone is given by

ABZ =
8
√

3π2

9a2
. (2.5)

k2

k1k3

k6k4

k5

Figure 2.3: The six corners of the first Brillouin zone. Each pair of {�,�} represents a set of
inequivalent points.

2.2 Symmetries of the honeycomb lattice

To cover all symmetries of the honeycomb lattice we need a minimal set of symmetry transfor-
mations, which generates all transformations leaving the lattice invariant. Such a set consists
of a shift symmetry and the generating elements of the dihedral group D6, which are a ro-
tation of 60 degrees and a reflexion at the x1-axis. For further investigations, it will turn
out to be essential to distinguish between symmetry transformations under which the two
sublattices map onto themselves (A→ A, B → B), respectively sublattice A is mapped on B
and vice versa (A↔ B).



12 Chapter 2. Properties of the honeycomb lattice

2.2.0.1 Shift symmetry Di

The honeycomb lattice remains invariant under a displacement along the two primitive lattice
vectors introduced in Eq. (2.1). Such a shift maps A→ A and B → B.

2.2.0.2 Rotation symmetry O

D6 predicts a symmetry under a 60 degrees spatial rotation around an axis located in the
center of a hexagon. This leads to A ↔ B and O turns a lattice point x = (x1, x2) into

Ox = (1
2x1 −

√
3

2 x2,
√

3
2 x1 + 1

2x2).

We will now emphasise a characteristic difference between the honeycomb lattice and a square
lattice with primitive vectors e1 = (a, 0), e2 = (0, a). For the square lattice, the rotation center
is conventionally located at a certain lattice point. Compared to the honeycomb lattice, a
shift along one of the vectors ei now maps A↔ B. On the other hand, a rotation around 90
degrees maps A→ A and B → B.

2.2.0.3 Reflexion symmetry R

The honeycomb lattice exhibits in total six reflexion symmetry axes. Three of them are
perpendicular to the sides of the hexagon and the remaining three symmetry axes run through
its edges. We only consider reflexions with respect to the x1-axis (Fig. 2.1). Reflexions with
respect to an arbitrary symmetry axis can then be obtained by first rotating the hexagon
and then performing the reflexion at the x1-axis. The reflexion symmetry maps A → A and
B → B. R acts on x as Rx = (x1,−x2).



Chapter 3

Microscopic models for quantum
antiferromagnets and their
symmetries

QCD is the underlying theory of BχPT. We assume that the Hubbard model is a reliable
model describing, in general, a doped quantum antiferromagnet, and therefore is valid as a
concrete microscopic model for the low-energy effective field theory for magnons and holes to
be constructed in this thesis. After introducing the Hamiltonian, we investigate the strong
coupling regime of the Hubbard model to discuss briefly its two limiting cases namely the t-J
model and the Heisenberg model. Furthermore, due to the fact that the effective Lagrangian
must inherit all symmetries of the underlying microscopic system, a careful symmetry analysis
of the Hubbard model is presented. Note, that whenever we speak about up (↑) or down (↓)
spins in the framework of the microscopic theory, we mean the projection of the spin onto a
global quantisation axis in the 3-direction.

3.1 The Hubbard model

Let c†xs denote the operator which creates a fermion with spin s ∈ {↑, ↓} on a lattice site
x = (x1, x2). The corresponding annihilation operator is cxs. These fermion operators obey
the canonical anticommutation relations

{cxs†, cys′} = δxyδss′ , (3.1)

and

{cxs, cys′} = {c†xs, c†ys′} = 0. (3.2)

By successively acting with the creation operator c†xs onto the vacuum state |0〉 for various
x and s (cxs|0〉 = 0), one creates the Hilbert space of the model. Since we are considering
fermions, the Pauli principle must be respected and therefore the anticommutation relations
of Eq. (3.2) imply (c†xs)2 = 0. Thus, each lattice site can either be vacant, occupied by an ↑
spin or ↓ spin fermion, or occupied by two fermions with opposite spin.

13
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According to [42], the Hubbard model is a minimal model, which takes into account quantum
mechanical motion of electrons on a lattice and a short-ranged repulsive interaction between
two electrons on the same lattice site. It was first introduced by Hubbard, Gutzwiler and
Kanamori in [43]. The Hubbard model is simplified such that the inner structure of the atom
is neglected and only electrons, hopping from site to site, are considered. This corresponds to
the tight-binding picture of a solid. The second quantized Hubbard Hamiltonian is defined
by

H = −t
∑

〈x,y〉
s=↑,↓

(c†xscys + c†yscxs) + U
∑

x

c†x↑cx↑c
†
x↓cx↓ − µ′

∑

x
s=↑,↓

c†xscxs, (3.3)

where 〈x, y〉 indicates summation over nearest neighbours. The parameter t is the probability
amplitude for a fermion to tunnel from site x to site y. Remember, that in the case of the
honeycomb lattice, the Hubbard model is formulated on a bipartite lattice. Therefore, only
hopping between different sublattices is allowed. The parameter U > 0 fixes the strength
of the Coulomb repulsion between two fermions located on the same lattice site. Note that,
unlike in real materials, the Coulomb interaction in the framework of the Hubbard model is
considered to be only short-ranged. In the terms proportional to U and µ′ one can identify
the fermion number-density operator nxs = c†xscxs. The parameter µ′ denotes the chemi-
cal potential and controls a possible doping. The corresponding term counts the additional
fermions relative to an empty lattice. For µ′ = 0, the system is said to be half-filled, which
means that the number of fermions is equal to the number of lattice sites, i.e. on average the
system has one fermion per lattice site.

The fermion creation and annihilation operators can be used to define the following SU(2)s
(s for spin), Pauli spinor

c†x =
(
c†x↑, c

†
x↓

)
, cx =

(
cx↑
cx↓

)
. (3.4)

To display the various symmetries of the Hubbard model in a manifest way, it is convenient
to reformulate Eq. (3.3) in terms of c†x and cx. This leads to

H = −t
∑

〈x,y〉
(c†xcy + c†ycx) +

U

2

∑

x

(c†xcx − 1)2 − µ
∑

x

(c†xcx − 1). (3.5)

The parameter µ = µ′− U
2 controls a possible doping where the fermions, due to the subtrac-

tion of the constant 1, are now counted with respect to half-filling.

3.1.1 The strong coupling regime (U ≫ t) of the Hubbard model

By investigating the strong coupling limit U ≫ t of the Hubbard model one finds two limiting
cases depending on the doping parameter µ.

3.1.1.1 U ≫ t and µ 6= 0: The t-J model

Away from half-filling and for U ≫ t, second order perturbation theory applied to the Hub-
bard model leads to the t-J model, which in terms of Eq. (3.4) is described by
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H = P
{
− t

∑

〈x,y〉
(c†xcy + c†ycx) + J

∑

〈x,y〉

~Sx · ~Sy − µ
∑

x

(c†xcx − 1)

}
P. (3.6)

Also the t-J model is supposed to describe the dynamics of mobile and interacting fermions
in an antiferromagnet. The exchange coupling J is related to the parameters of Eq. (3.3) by

J = 2t2

U > 0. Again, t is the hopping amplitude and the chemical potential µ controlls the
doping with respect to a half-filled system. The SU(2)s spin operator on a site x is given by

~Sx = c†x
~σ

2
cx, (3.7)

where ~σ are the Pauli matrices.1 The components of Eq. (3.7) obey [Slx, S
m
y ] = iδxyε

lmnSnx .

Since for U ≫ t doubly occupied sites are energetically unfavourable, such states are projected
out of the Hilbert space by the operator P. We are then left with a restricted configuration
space, only allowing empty and singly occupied lattice sites. Therefore, the t-J model can
solely describe hole-doped systems. In [16], the single-hole sector of the t-J model was simu-
lated on the honeycomb lattice by using an efficient loop-cluster algorithm.

Due to their strong coupling, the Hubbard model as well as the t-J model are inaccessible to
a systematic analytic treatment. Moreover, numerical simulations for µ 6= 0 are afflicted by
a severe fermion sign problem.

3.1.1.2 U ≫ t and µ = 0: The antiferromagnetic spin 1
2 quantum Heisenberg

model

As already mentioned, for U ≫ t doubly occupied sites are energetically very unfavorable
and therefore, in a system at half-filling, each lattice site is occupied either by an ↑ or ↓
spin. Every such configuration is then a ground state of the interaction term in the Hubbard
Hamiltonian with eigenvalue E = 0. Hence, we are left with an infinite degeneracy. Note, that
this situation corresponds to t = 0 and thus represents the leading order in a perturbation
theory in t

U . The first order in t
U corresponds to a single hop of a fermion. However, there

can be no correction at first order because one hop of a spin cannot again lead to a ground
state of the Hubbard U -term. First corrections to the ground state occur at second order
perturbation theory, i.e. t2

U . Now a spin can virtually hop to a neighbouring site, occupied
with a fermion of opposite spin, and then hop back or it can stay on the new site, while the
other spin hops back to the empty site. In this case the new state differs from the old one
by the exchange of two spins. Of course, the Pauli principle must always be respected and
therefore a fermion cannot hop to a neighbouring site with an identically oriented spin on it.
In the end, these virtual hopping processes then favour antiparallel spin alignment. Formally,
this procedure results in the use of Brillouin-Wigner perturbation theory, where the Coulomb
part of the Hubbard Hamiltonian is the unperturbed system and the kinetic part represents

1We use the standard representation

σ1 =

„

0 1
1 0

«

, σ2 =

„

0 −i
i 0

«

, σ3 =

„

1 0
0 −1

«

, (3.8)

of the Pauli matrices. Throughout this thesis we set ~ = 1.
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the perturbation. According to [44], the Hubbard Hamiltonian for U ≫ t and µ = 0 can then
be approximated by the spin 1

2 quantum Heisenberg Hamiltonian

H = J
∑

〈x,y〉

~Sx · ~Sy. (3.9)

The exchange coupling constant J is related the Hubbard model parameters by J = 2t2

U > 0.
~Sx is the spin operator on lattice site x given by

~Sx =
1

2
~σx. (3.10)

Note, that the Heisenberg model includes no fermion hopping. It only describes localised
spins, interacting among nearest neighbours with coupling strength J . For J < 0, Eq. (3.9)
describes ferromagnetism and the corresponding ground state can be derived analytically.
This is not the case for the antiferromagnetic ground state of the Heisenberg model with
J > 0. Intuitively it seems to be natural to assume the classical Néel state

|N〉 =
∏

x∈A
c†x↑

∏

x∈B
c†x↓|0〉 (3.11)

to be the ground state of Eq. (3.9). Its characteristic antiparallel alignment of spins emanates
from the bipartite structure of the honeycomb lattice.2 A short calculation, however, shows
that the state of Eq. (3.11) is not an eigenstate of Eq. (3.9). Moreover, Marshall’s theorem
in [45] states that the antiferromagnetic ground state of the Heisenberg Hamiltonian is a
singlet, which the classical Néel state is not. Actually, the ground state of the Heisenberg
Hamiltonian consists of Eq. (3.11) and additional spin fluctuations. Nevertheless, the classical
Néel state induces an order parameter - the staggered magnetisation vector defined as3

~Ms =
∑

x

(−1)x ~Sx. (3.12)

We define (−1)x = 1 for all x ∈ A and (−1)x = −1 for all x ∈ B, where A and B are
the triangular sublattices of the honeycomb lattice introduced in section 2.1. The staggered
magnetisation, as a Hermitean operator, shows a non-vanishing vacuum expectation value in
the antiferromagnetic phase, which is maximised for the classical Néel state. In contrast to a
ferromagnet, the total uniform magnetisation ~M =

∑
x
~Sx vanishes for an antiferromagnet.

3.2 Symmetries of the Hubbard model

Since all terms in the effective Lagrangian must be invariant under all symmetries of the
Hubbard model, a careful symmetry analysis of Eq. (3.5) is needed. Investigating symmetries
will now essentially be reduced to determining the transformation properties of the Pauli
spinor cx. Let us divide the symmetries of the Hubbard model into two categories: Continuous
symmetries (SU(2)s, U(1)Q and SU(2)Q), which are implicit symmetries of Eq. (3.5), and
discrete symmetries (Di, O and R), which are symmetry transformations of the underlying

2A non-bipartite lattice, e.g. a triangular lattice, cannot induce perfect antiparallel alignment of spins.
3The existence of a non-vanishing order parameter, i.e. 〈0| ~Ms|0〉 6= 0, indicates a spontaneously breakdown

of a continuous, global symmetry. This will be discussed in section 5.1.
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honeycomb lattice. There is also time reversal implemented by an anti-unitary operator T .
This symmetry, however, will be discussed only in the framework of the effective field theory
for magnons (section 5.1). Let us begin with the two basic continuous symmetries of the
Hubbard model, namely the SU(2)s spin rotation symmetry and the U(1)Q charge (fermion
number) symmetry. A detailed analysis of these two symmetries can be found in [46].

3.2.1 SU(2)s spin rotation symmetry

In order to construct the appropriate unitary transformation representing a global SU(2)s
spin rotation, we first define the total SU(2)s spin operator by

~S =
∑

x

~Sx =
∑

x

c†x
~σ

2
cx. (3.13)

The three generators of SU(2)s are then given by

S1 =
1

2

∑

x

(c†x↑cx↓+c†x↓cx↑), S2 =
i

2

∑

x

(c†x↓cx↑−c
†
x↑cx↓), S3 =

1

2

∑

x

(c†x↑cx↑−c
†
x↓cx↓). (3.14)

An SU(2)s symmetry is now implemented by the unitary operator

V = exp(i~η · ~S), (3.15)

which acts on cx as

c′x = V †cxV = exp

(
i~η · ~σ

2

)
cx = gcx, g ∈ SU(2)s. (3.16)

Due to the fact that [H, ~S ] = 0, the total spin is conserved and by means of Eq. (3.16) it
is straightforward to show that the Hubbard Hamiltonian is indeed invariant under global
SU(2)s spin rotations.

3.2.2 U(1)Q charge symmetry

For the purpose of constructing the appropriate unitary transformation of a U(1)Q symmetry,
we proceed in full analogy to the SU(2)s case by first defining the U(1)Q charge operator

Q =
∑

x

Qx =
∑

x

(c†xcx − 1) =
∑

x

(c†x↑cx↑ + c†x↓cx↓ − 1), (3.17)

which counts the fermion number with respect to half-filling. The corresponding U(1)Q
unitary operator is given by

W = exp(iωQ), (3.18)

and the fermion operators transform as

Qcx = W †cxW = exp(iω)cx, exp(iω) ∈ U(1)Q. (3.19)

[H, Q] = 0 and therefore charge is a conserved quantity of the Hubbard model. Instead of
saying charge is conserved, it is equivalent to speak about fermion number conservation. It
is easy to see that the Hubbard Hamiltonian is invariant under the U(1)Q fermion number
symmetry.
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3.2.3 Shift symmetry Di

The Hubbard model shows invariance under shifts along the two primitive lattice vectors a1

and a2. These transformations are generated by the unitary operators Di, which act on the
spinor cx as

Dicx = D†
i cxDi = cx+ai . (3.20)

By applying Eq. (3.20) on the Hubbard Hamiltonian of Eq. (3.5) and redefining the sum over
lattice sites x, one can see that indeed [H,Di] = 0. Since the shift symmetry maps A → A
and B → B, this transformation does not affect the order parameter ~Ms.

3.2.4 Rotation symmetry O

A spatial rotation of 60 degrees leaves Eq. (3.5) invariant. Since spin-orbit coupling is ne-
glected in the Hubbard model, and therefore spin and angular momentum are separately
conserved, spin becomes an internal quantum number. A global SU(2)s spin rotation can
thus be performed independent of a rotation in coordinate space and vice versa. The rotation
symmetry is implemented by the use of a unitary operator O, which acts on the fermion
operators as

Ocx = O†cxO = cOx. (3.21)

Rotation symmetry on the honeycomb lattice is spontaneously broken because O maps sub-
lattice A ↔ B and therefore the staggered magnetisation ~Ms gets flipped. This is, however,
just the same as redefining the sign of (−1)x and should therefore not change the physics.
In the construction of the effective field theory for magnons and holes, it will turn out to
be useful to incorporate the combined symmetry O′ consisting of a spatial rotation O and a
global SU(2)s spin rotation g = iσ2. O

′ transforms cx as

O′
cx = O

′†cxO
′ = (iσ2)

Ocx = (iσ2)cOx. (3.22)

The specific SU(2)s element g corresponds to a global spin rotation of 180 degrees and thus
flips back ~Ms, such that, in fact, at the end the order parameter is not affected by O′. As
opposed to the honeycomb lattice, ~Ms changes sign under the shift symmetryDi on a bipartite
square lattice. In this case, a combined shift symmetry D′

i is needed. Since on the square
lattice O maps sublattice A→ A and B → B, the staggered magnetisation is not affected by
under rotation by an angle of 90 degrees.

3.2.5 Reflexion symmetry R

The Hubbard Hamiltonian is invariant under reflexion of the lattice points x. Under this
transformation, the fermion operators transform as

Rcx = R†cxR = cRx. (3.23)

Since R maps the two sublattices onto themselves, ~Ms remains invariant.
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3.2.6 SU(2)Q - A non-Abelian extension of the U(1)Q charge symmetry

In [47, 48], Yang and Zhang proved the existence of a non-Abelian extension for the U(1)Q
fermion number symmetry in the half-filled Hubbard model. They call this symmetry a
pseudospin symmetry, which contains U(1)Q as a subgroup. SU(2)Q is realised on the square
as well as on the honeycomb lattice and is generated by the three operators

Q+ =
∑

x

(−1)xc†x↑c
†
x↓, Q− =

∑

x

(−1)xcx↓cx↑,

Q3 =
∑

x

1

2
(c†x↑cx↑ + c†x↓cx↓ − 1) =

1

2
Q. (3.24)

The factor (−1)x again distinguishes between the two sublattices A and B of the honeycomb
lattice. Defining Q± = Q1 ± iQ2, we can work out

Q1 =
∑

x

1

2
(−1)x(c†x↑c

†
x↓ + cx↓cx↑), Q2 =

∑

x

1

2i
(−1)x(c†x↑c

†
x↓ − cx↓cx↑), (3.25)

to show that the SU(2)Q Lie-algebra [Ql, Qm] = iεlmnQn, with l,m ∈ {1, 2, 3}, indeed is

satisfied. Moreover, it is straightforward to calculate [H, ~Q] = 0 with ~Q = (Q1, Q2, Q3) for
the Hubbard H with µ = 0.

The Hubbard Hamiltonian in the form of Eq. (3.3) or Eq. (3.5) is not manifestly invariant
under SU(2)s ⊗ SU(2)Q. In order to find a manifestly SU(2)s ⊗ SU(2)Q invariant represen-
tation, we arrange the fermion operators in a 2× 2 matrix-valued operator. How this is done
in detail can be found in [46]. Here we simply state the new fermion representation by

Cx =

(
cx↑ (−1)x c†x↓
cx↓ −(−1)xc†x↑

)
. (3.26)

The SU(2)Q transformation behaviour of Eq. (3.26) can now be worked out by applying the

unitary operator W = exp(i~ω · ~Q). One then finds

~QCx = W †CxW = CxΩ
T , (3.27)

with

Ω = exp

(
i~ω · ~σ

2

)
∈ SU(2)Q. (3.28)

The Pauli matrices now belong to the SU(2)Q space. Under an SU(2)s spin rotation, Cx
transforms exactly like cx, i.e.

C ′
x = gCx, g ∈ SU(2)s. (3.29)

Applying an SU(2)s ⊗ SU(2)Q transformation to Eq. (3.26) then leads to

~QC ′
x = gCxΩ

T . (3.30)



20 Chapter 3. Microscopic models for quantum antiferromagnets and their symmetries

Since the SU(2)s spin symmetry acts from the left and the SU(2)Q pseudospin symmetry
acts from the right onto the fermion operator, it is now obvious that these two non-Abelian
symmetries do commute. Under the discrete symmetries of the Hubbard model, Cx has the
following transformation properties

Di : DiCx = Cx+ai ,

O : OCx = COxσ3,

O′ : O′
Cx = (iσ2)COxσ3,

R : RCx = CRx, (3.31)

which can be worked out by using the already elaborated transformation laws of cx. In terms
of Eq. (3.26), we are now able to write down the Hubbard Hamiltonian in a manifestly SU(2)s,
U(1)Q, Di, O, O′ and R invariant form

H = − t

2

∑

〈x,y〉
Tr[C†

xCy + C†
yCx] +

U

12

∑

x

Tr[C†
xCxC

†
xCx] −

µ

2

∑

x

Tr[C†
xCxσ3]. (3.32)

Obviously, the σ3 Pauli matrix in the chemical potential term prevents the Hubbard Hamil-
tonian from being invariant under SU(2)Q away from half-filling. For µ 6= 0, SU(2)Q breaks
down to its subgroup U(1)Q. In addition, the pseudospin symmetry is realised in Eq. (3.32)
only if nearest neighbour-hopping is included. As soon as the Hubbard model is modified such
that it describes next-to-nearest-neighbour tunneling, the SU(2)Q invariance gets lost even
for µ = 0. SU(2)Q contains a particle-hole symmetry which physically implies a symmetry
between the positive energy spectrum of a particle and the negative energy spectrum of a
hole. Although this pseudospin symmetry is not present in real materials, it will play an
important role in the construction of the effective field theory. The identification of the final
effective fields for holes then leads us to explicitly break the SU(2)Q symmetry (section 6.5).

3.3 Symmetries of the t-J model

The symmetries of the the t-J model are identical to the ones of the Hubbard model up to
the SU(2)Q symmetry. Remember, that the t-J model can only describe hole-doped sys-
tems. Since SU(2)Q relates the electron- and the hole-doped sectors in a symmetric way, this
symmetry is not present in the t-J model. However, during the construction of the effective
degrees of freedom for holes we will break SU(2)Q anyway and hence the t-J Hamiltonian as
an underlying microscopic model for the effective theory is as reliable as the Hubbard model.
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Low-energy effective field theory for
free fermions

A system on the honeycomb lattice, that is under thorough investigation, is graphene (see
e.g. [49–51]). Neutral graphene is a two-dimensional graphite monolayer consisting of carbon
atoms arranged on a honeycomb lattice, which shows semi-metallic behaviour. A peculiar
interesting feature of graphene is that its low-energy excitations are free, massless and rela-
tivistic Dirac fermions moving with a speed vF . Undoped graphene is well described by the
Hubbard model at half-filling in the weak coupling limit (U ≪ t). Monte Carlo simulations of
the half-filled Hubbard model in [52] have shown that for sufficiently large repulsion U there
exists a phase transition leading graphene from its weakly correlated unbroken phase into a
strongly coupled antiferromagnetic phase, which is governed by a spontaneous breakdown of
SU(2)s to U(1)s. This kind of a phase transition does not occur on a square lattice since
such a system already exhibits antiferromagnetic behaviour for arbitrarily small U and t′ = 0.

In general, spontaneous symmetry breaking is not a necessary condition for the existence of
an effective field theory. As long as the low-energy degrees of freedom are describing the
lightest particles in the spectrum, the effective theory approach is valid. Therefore, one is
allowed to describe the massless Dirac excitations of semi-metallic graphene by an effective
Lagrangian since these particles are the only relevant low-energy degrees of freedom.

In this section, we first confirm the existence of massless Dirac fermions by diagonalising the
Hubbard Hamiltonian in the weak coupling limit. Furthermore, this procedure allows us to
determine an analytic expression for the fermion velocity vF . Once the microscopic model is
solved, we establish the correct degrees of freedom to construct an effective field theory for free
Dirac fermions with zero mass only based on the symmetries of the underlying microscopic
model. Note, that this theory is not yet a correct description of graphene’s low energy
excitations, since spin and contact interaction between fermions are not included. However,
the corresponding Lagrangian Lfree2 will indeed reveal the form of a Dirac Lagrangian without
a mass term what proves the equivalence between our effective field theory approach and the
corresponding microscopic model in the low-energy regime.

21
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4.1 Massless, free Dirac fermions in the framework of the
Hubbard model

In the weak coupling limit of the Hubbard model (U ≪ t) the Coulomb interaction U can be
treated as a small perturbation. In [44] it is assumed that states of weakly coupled fermions
are equivalent to states of free fermions and therefore we completely neglect the interaction
term in the Hubbard Hamiltonian. An undoped system (µ = 0), consisting of weakly coupled
fermions, is then described by

H = Ht + Ht′ = −t
∑

〈x,y〉
(c†xcy + c†ycx) − t′

∑

〈〈x,y〉〉
(c†xcy + c†ycx), (4.1)

where t′ now allows next-to-nearest neighbour hopping with the corresponding summation
indicated by 〈〈x, y〉〉. Remember, that t′ = 0 leads to a manifestly SU(2)Q variant Hubbard
Hamiltonian. The U = 0 limit now allows us to derive the energy-momentum relation for
free fermions by transforming Eq. (4.1) into momentum space. As a first step, we expand the
Pauli spinor cx on a 2-dimensional, infinite extended honeycomb lattice as

cXx =
1

ABZ

∫

ABZ

d2k exp(ikx)cXk , X ∈ {A,B}, (4.2)

where cA†x (cAx ) creates (annihilates) fermions on sublattice A and cB†
x (cBx ) creates (annihilates)

fermions on sublattice B. A detailled derivation of Eq. (4.2) can be found in [44]. Note, that
cXk↑ and cXk↓ still obey canonical anticommutation relations. To capture all nearest and next-
to-nearest neighbours we introduce the vectors {ji, j′i} with i = 1, 2, 3. Then Eq. (4.1) takes
the form

H = −t
3∑

i=1

∑

x∈A
(cA†x cBx+ji + cB†

x+ji
cAx )

−t′
3∑

i=1

[∑

x∈A
(cA†x cAx+j′i

+ cA†x+j′
i
cAx ) +

∑

x∈B
(cB†
x cBx+j′i

+ cB†
x+j′

i
cBx )
]
, (4.3)

where

j1 = (a, 0) , j2 =
(
−1

2a,
√

3
2 a
)
, j3 =

(
−1

2a,−
√

3
2 a
)
, (4.4)

connect each x ∈ A with its nearest neighbours on B, and

j′1 =
(

3
2a,

√
3

2 a
)
, j′2 =

(
0,
√

3a
)
, j′3 =

(
3
2a,−

√
3

2 a
)
, (4.5)

connect each x ∈ A (x ∈ B) with its next-to-nearest neighbours which are located on the
same sublattice A (B). Plugging Eq. (4.2) in Eq. (4.3) and using

1

ABZ

∑

x

exp(i(k − k′)x) = δ(2)(k − k′),
1

ABZ

∫

ABZ

d2k exp(ik(x − x′)) = δx,x′ , (4.6)
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one obtains

H = − 1

ABZ

∫

ABZ

d2k
(
cA†k , cB†

k

)
H(k)

(
cAk
cBk

)
, (4.7)

with

H(k) =

(
t′f(k) tg(k)
tg∗(k) t′f(k)

)
, (4.8)

and

f(k) = 4 cos

(
3

2
k1a

)
cos

(√
3

2
k2a

)
+ 2cos

(√
3k2a

)
, (4.9)

g(k) = cos (k1a) + i sin (k1a) + 2 cos

(√
3

2
k2a

)[
cos

(
1

2
k1a

)
− i sin

(
1

2
k1a

)]
. (4.10)

The diagonalisation of the Hamiltonian in Eq. (4.8) yields the energy eigenvalues

E±(k) = t′f(k) ± tg(k) (4.11)

= t′f(k) ± t
√

3 + f(k)

= t′
[
4 cos

(
3

2
k1a

)
cos

(√
3

2
k2a

)
+ 2cos

(√
3k2a

)]

±t

√√√√3 + 4 cos

(
3

2
k1a

)
cos

(√
3

2
k2a

)
+ 2cos

(√
3k2a

)
,

where the the plus sign applies to the upper (conduction) and the minus sign applies to the
lower (valence) band. In the half-filled ground state, i.e. T = 0, all states with E− are occu-
pied, while the conduction band is completely empty. Let us first investigate the case t′ = 0.
As one can see in Fig. 4.1 (a), the Fermi energy lies at the common points of the two bands
with EF = 0. The Fermi surface therefore consists of the six points at the six Brillouin zone
corners where the two bands are degenerated. These points are known as Dirac points. The
contact of the valence and the conduction band indicates the semi-metallic phase of graphene.
For t′ = 0 the two bands are completely symmetric around zero energy, which illustrates the
particle-hole symmetry of SU(2)Q. The value of the energy for an electron occupying a state
in the conduction band is equal to the absolute value of the energy from its corresponding hole
in the valence band. Increasing (decreasing) the value of t raises (lowers) the energy scale but
does not affect EF or the topology of the two bands. The situation changes when we allow
t′ 6= 0 (Fig. 4.1 (b)). As we already discussed, SU(2)Q is now broken down to U(1)Q and
therefore the valence and the conduction band become asymmetric. The presence of t′ now
shifts EF and for some values of t and t′ the two bands even cover the same energy region. In
this case, the Fermi surface is no longer at the Dirac points (Fig. 4.1 (c)). However, we have
calculated that the two bands touch each other at the Dirac points for all values of t and t′.
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(c) t = 2.6 and t′ = 2.5

Figure 4.1: E(k) for a free fermion.

How can we now see that the low-energy physics of graphene is governed by massless rela-
tivistic Dirac fermions? Let us expand E±(k) in a Taylor series in k = (k1, k2) at all the six
Dirac points up to first order. This leads to

E+(p) = −3t′ +
3ta

2

√
p2
1 + p2

2 + O(p2), (4.12)

and

E−(p) = −3t′ − 3ta

2

√
p2
1 + p2

2 + O(p2), (4.13)

with momentum p=(p1, p2) now defined relative to the appropriate Dirac point. Neglecting
the energy shift proportional to t′, one indeed can recognise the relativistic energy-momentum
relation for a massless, free particle with momentum p

E±(p) = ±c|p| = ±c
√
p2
1 + p2

2, (4.14)

and c in this case being the fermion velocity

vF =
3ta

2
. (4.15)

It is interesting to see that the fermion velocity vF shows no momentum dependence and
moreover solely depends on the hopping parameter t and the lattice spacing a.1 Since the

1The value of the fermion velocity vF ≃ 1 × 106m/s was obtained by P. R. Wallace in [53].
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dispersion relation E±(p) becomes isotropic and linear in the vicinity of EF , so called Dirac
cones arise. According to the above expansion such cones occur in every Dirac Point. Al-
though we allow t′ 6= 0, the Dirac fermions remain massless since for all t and t′ the two bands
are connected at the six Brillouin zone corners. Let us briefly summarize our findings. In the
weak coupling limit we are able to diagonalise the Hubbard Hamiltonian for U = 0, including
next-to-nearest neighbour hopping, analytically. Expanding the resulting dispersion relation
around the six Dirac points indeed shows that the low-energy excitations are free, relativistic
fermions with zero mass. By means of the lattice specific vectors {ji, j′i}, we incorporated
the geometry of the honeycomb lattice to derive the dispersion relation of Eq. (4.11). We
therefore conclude, that massless Dirac excitations are generated by the geometry of the un-
derlying honeycomb lattice.

Free, relativistic fermions with zero mass in two space dimensions are described by the Dirac
Hamiltonian

HD(p) = αpc = (−σ2p1 + σ1p2)c, (4.16)

where αi = γ0γi. We choose the corresponding γµ to be

γ0 = σ3, γ1 = iσ1, γ2 = iσ2, (4.17)

satisfying

{γµ, γν} = 2gµν12×2, µ, ν ∈ {0, 1, 2}, with gµν =




1 0 0
0 −1 0
0 0 −1


 . (4.18)

Again, c denotes the fermion velocity and not the speed of light. To show that the Hamil-
tonian H(k) of Eq. (4.8) is equivalent to HD(p) in the low-energy regime, we expand H(k),
incorporating only g(k) and g∗(k) (we set t′ = 0), for small momenta at the six Dirac points.
The resulting Hamiltonians can then be decomposed according to Eq. (4.16). However, now
the σ-matrices appear in a specific representation for each Dirac point, which may differ from
the standard representation used in Eq. (4.17). To prove the equivalence of H(k) and HD(p),
it is sufficiently to show that for each Dirac point there exist some specific matrices U ∈ U(2)
such that the standard representation of the σ-matrices can be obtained by a unitary trans-
formation. We have shown that indeed such matrices exist for each corner of the Brillouin
zone and therefore H(k) is equal to HD(p) near EF .

It is an interesting question to ask whether a low-energy effective field theory for free fermions
on the honeycomb lattice, only based on symmetry considerations, also prohibits mass terms.

4.2 Effective degrees of freedom for free fermions

Before we are able to construct the effective field theory for free fermions, we first have to
identify the correct low-energy degrees of freedom and their transformation behaviour under
all symmetries of the Hubbard Hamiltonian. In the following considerations we only allow
nearest neighbour hopping, i.e. t′ = 0, and we do not yet consider spin. To include spin would
be a trivial step. One just has to add a corresponding spin index to the fermion fields.
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4.2.1 Momentum space pockets for free fermions

Exact diagonalisation of the half-filled Hubbard Hamiltonian for U = 0 has revealed free,
massless fermions occurring in the vicinity of the six Dirac points. A small, circular shaped
neighbourhood of any of these points we define as a pocket. According to section 2.1, among
these six points only two points form a set of inequivalent points. The transformation be-
haviour of the final fermion fields turns out to be remarkably simple when we choose

k2 = kα =
(
0, 4π

3
√

3a

)
, k5 = kβ =

(
0,− 4π

3
√

3a

)
, (4.19)

to be the inequivalent points. Then α and β denote the corresponding pockets. All the
other points of the reciprocal lattice are in fact periodic copies of kα and kβ . Moreover,
Γ = (0, 0) must be included since it can be reached by adding kα and kβ. In section 2.1 we
emphasized that the Brillouin zone of a honeycomb lattice is doubly covered, dual to the two
triangular sublattices A and B. Therefore, in coordinate space the {Γ, kα, kβ} structure of the
Brillouin zone induces a three sublattice structure for A and B. The resulting six sublattices
{A1, A2, A3} and {B1, B2, B3} are then superimposed on the antiferromagnetic A-B bipartite
lattice structure (Fig. 4.2).
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Figure 4.2: {A1, A2, A3} and {B1, B2, B3} sublattice structure and the corresponding primitive
lattice vectors.

4.2.2 Free fermion fields with a sublattice and a momentum index

Since at the end, the low-energy effective Lagrangian for free fermions is constructed in a Eu-
clidean path integral formalism, the appropriate fermion fields are represented by Grassmann
numbers ψ(x). Representing the fermion degrees of freedom by anticommuting numbers



4.2. Effective degrees of freedom for free fermions 27

on the level of the effective field theory, they inherit the anticommuting behaviour of the
microscopic lattice operators. However, in contrast to these operators, the fermion fields
are now defined in a space-time continuum. In coordinate space a fermion at space-time
point x = (x1, x2, t) is represented by the Grassmann field ψXi(x), with i ∈ {1, 2, 3}, and
X ∈ {A,B}, where Xi denotes the corresponding sublattice introduced in section 4.2.1. It
is important to point out that, opposed to the microscopic operators, the conjugated Grass-
mann fields ψXi†(x) are independent of ψXi(x).

We now want to directly relate the fermion fields to the lattice momenta kα and kβ, i.e. to the
fermion pockets α and β. This can be achieved by introducing an additional index f ∈ {α, β},
which indicates where in the Brillouin zone the Grassmann fields are located. The new degrees
of freedom describing free fermions are then labelled with a sublattice index X ∈ {A,B} and
a ”flavour” index f ∈ {α, β} addressing the corresponding lattice momenta in the Brillouin
zone. These fields are derived through the following discrete Fourier transformations

ψA,f (x) =
1√
3

3∑

n=1

exp(−ikfvn)ψAn(x), and ψB,f (x) =
1√
3

3∑

n=1

exp(−ikfwn)ψBn(x),

(4.20)
where

v1 =
(
−1

2a,−
√

3
2 a
)
, v2 = (a, 0) , v3 =

(
−1

2a,
√

3
2 a
)
,

w1 =
(

1
2a,−

√
3

2 a
)
, w2 = (−a, 0) , w3 =

(
1
2a,

√
3

2 a
)
. (4.21)

The above vectors connect the discrete three-sublattice structure of A and B in position space
with lattice momenta kf in momentum space (Fig. 4.3).

w3v3

w2

v1 w1

v2

Figure 4.3: Sublattice vectors from Eq. (4.21).
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We find

ψA,α(x) =
1√
3

[
exp(i2π3 )ψA1(x) + ψA2(x) + exp(−i2π3 )ψA3(x)

]
,

ψA,β(x) =
1√
3

[
exp(−i2π3 )ψA1(x) + ψA2(x) + exp(i2π3 )ψA3(x)

]
,

ψB,α(x) =
1√
3

[
exp(i2π3 )ψB1(x) + ψB2(x) + exp(−i2π3 )ψB3(x)

]
,

ψB,β(x) =
1√
3

[
exp(−i2π3 )ψB1(x) + ψB2(x) + exp(i2π3 )ψB3(x)

]
, (4.22)

and the independent conjugate fields

ψA,α†(x) =
1√
3

[
exp

(
−i2π3

)
ψA1†(x) + ψA2†(x) + exp

(
i2π3
)
ψA3†(x)

]
,

ψA,β†(x) =
1√
3

[
exp

(
i2π3
)
ψA1†(x) + ψA2†(x) + exp

(
−i2π3

)
ψA3†(x)

]
,

ψB,α†(x) =
1√
3

[
exp

(
−i2π3

)
ψB1†(x) + ψB2†(x) + exp

(
i2π3
)
ψB3†(x)

]
,

ψB,β†(x) =
1√
3

[
exp

(
i2π3
)
ψB1†(x) + ψB2†(x) + exp

(
−i2π3

)
ψB3†(x)

]
. (4.23)

Since we are solely interested in fermion fields located in the pockets α and β, we do not list
the linear combinations of fields corresponding to Γ = (0, 0).

4.2.3 Transformation behaviour of free fermion fields with a sublattice and
a momentum index

Within the scope of the effective theory for free fermions, we simply replace the microscopic
operators cXix , now defined on the six sublattices and without a spin index, by the Grassmann-
valued fields ψXi(x). The transformation properties under the different continuous and dis-
crete symmetries of the microscopic operators were already worked out in section 3.2. We
now just have to take into account how the additional sublattices Xi map onto each other
under the various symmetries. It is then straightforward to determine the transformation
properties of the linearly combined operators

cA,fx =
1√
3

3∑

n=1

exp(−ikfvn)cAnx , and cB,fx =
1√
3

3∑

n=1

exp(−ikfwn)cBnx , (4.24)

where we perform a discrete Fourier transform analogue to Eq. (4.20) with x = (x1, x2)
now being a discrete lattice point. To evaluate the transformation laws of the fermion fields
ψX,f (x), we now postulate that these fields transform exactly like their microscopic counter-
parts in Eq. (4.24). With this postulate, we establish a connection between the microscopic
and the effective theory. However, it is not possible to connect the microscopic and the effec-
tive theory in a mathematically more rigorous sense.
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Since we do not yet consider spin, it is not possible to define the generators {Q1, Q2, Q3}
of SU(2)Q. However, the Hubbard Hamiltonian of Eq. (4.1) with t′ = 0 is still invariant
under the discrete subgroup Z(2) ⊂ SU(2)Q, where 2 symbolically indicates the fact that
applying Z(2) twice, we end up with the original object. Z(2) is the particle-hole symmetry,
which interchanges holes and electrons. The microscopic operators transform under Z(2),
with i ∈ {1, 2, 3}, as

Z(2)cAix = cAi†x ,

Z(2)cBix = −cBi†x . (4.25)

With Eq. (4.25), Eq. (4.24) and the above postulate, we can then derive the transformation
behaviour of the fermion fields under Z(2).

Under the various symmetries the fermionic Grassmann fields ψX,f (x) finally transform as

Z(2) : Z(2)ψA,f (x) = ψA,f
′†(x),

Z(2)ψB,f (x) = −ψB,f ′†(x),
U(1)Q : QψX,f (x) = exp(iω)ψX,f (x),

Di : DiψX,f (x) = exp(ikfai)ψ
X,f (x),

O : OψA,α(x) = exp(−i2π3 )ψB,β(Ox),

OψA,β(x) = exp(i2π3 )ψB,α(Ox),
OψB,α(x) = exp(i2π3 )ψA,β(Ox),
OψB,β(x) = exp(−i2π3 )ψA,α(Ox),

R : RψX,f (x) = ψX,f
′
(Rx),

T : TψX,f (x) = −ψX,f ′†(Tx),
TψX,f†(x) = ψX,f

′
(Tx), (4.26)

with O, R, and T now acting on a space-time point x as

Ox = (1
2x1 −

√
3

2 x2,
√

3
2 x1 + 1

2x2, t),

Rx = (x1,−x2, t),

Tx = (x1, x2,−t). (4.27)

Here, f ′ indicates the other pocket than f . Since the fields are now defined in a space-time
continuum, the arguments do not change from x to x + ai under the shift symmetry Di.
Moreover, applying Di on a fermion field with a certain ”flavour” index f leads to a phase
factor indicating the corresponding lattice momentum kf in the Brillouin zone. The transfor-
mation properties of the conjugated fields ψX,f†(x) can be obtained by applying a †-operation
on the transformed fields in Eq. (4.26). However, one should keep in mind that these con-
jugated counterparts are independent fields. The time-reversal symmetry T is implemented
on the fields in the standard way. We now have completed the necessary preparatory work
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for the construction of the low-energy effective field theory for free relativistic fermions. We
have identified the relevant degrees of freedom describing fermions without spin and we have
determined their transformation properties under all symmetries of the underlying Hubbard
Hamiltonian of Eq. (4.1) with t′ = 0.

4.3 Effective field theory for free fermions

A low-energy effective Lagrangian is constructed as a derivative expansion, consisting of
all terms, up to a certain order, that are invariant under all symmetries of the underlying
microscopic Hamiltonian. We classify the terms in a Lagrangian Lnψ according to the number
of fermion fields nψ and derivatives they include. Because the number of fields and derivatives
are unaffected by symmetry transformations, we can investigate each class of terms separately.
Since we are interested in the low-energy physics regime of a given system, the effective
Lagrangian should contain as few derivatives as possible. We have shown for t′ = 0 and
µ = 0 that massless Dirac fermions have a relativistic dispersion relation, i.e. E ∝ p, for
small energy values. Thus, when acting on a fermion field, a time derivative counts like a
spatial derivative. In the leading order effective Lagrangian we therefore allow only one time
and one spatial derivative. By considering the U(1)Q fermion number symmetry, it becomes
obvious, that the terms must be combined with the same number of ψX,f†(x) and ψX,f (x)
fields. Otherwise, after applying a U(1)Q symmetry transformation, uncompensated phase
factors exp(±iω) remain. Hence, nψ must be always even. Furthermore, terms of the form
∂tψ

X,f†(x)ψX,f (x) or ∂iψ
X,f†(x)ψX,f (x) can be partially integrated (assuming the fields to be

zero at infinity) and are thus, up to an absorbable minus sign, equal to ψX,f†(x)∂tψX,f (x) and
ψX,f†(x)∂iψX,f (x). One therefore has to be careful including only one of these expressions
in the Lagrangian. The leading order Lagrangian with two fermion fields and up to one
derivative is of order O(p) and describes the kinetic energy of a free, massless fermion

Lfree2 =
∑

f=α,β
X=A,B

[
ψX,f†∂tψ

X,f + vF (σXψ
X,f†∂1ψ

X′,f + iσfψ
X,f†∂2ψ

X′,f )
]
, (4.28)

with

σX =

{
1 X = A

−1 X = B
, and σf =

{
1 f = α

−1 f = β
. (4.29)

Here, X ′ denotes the other sublattice than X and the fermion velocity vF in the framework of
the effective field theory now plays the role of a low-energy constant. The above Lagrangian
is valid only in an infinitesimal vicinity of the Dirac points and therefore describes electrons
and holes simultaneously. Lfree2 demonstrates the strength of the effective field theory ap-
proach: Just applying symmetry constraints, one concludes that the Lagrangian in Eq. (4.28)
does not contain mass terms. This is in full agreement with the predictions from the exact
diagonalisation procedure of the Hubbard model in the weak coupling limit.

At the beginning of section 4.1, we have assumed that weakly coupled fermions are similar to
free fermions and thus completely neglected the Coulomb part of the Hubbard Hamiltonian.
In real, semi-metallic graphene, however, the fermions are not free but weakly coupled. Thus,
besides including spin, the leading order of a realistic description of graphene’s low-energy
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excitations additionally must contain contact interaction terms consisting of more than two
fermion fields, e.g. 4-Fermi terms.

The Dirac Lagrangian in (2 + 1)-dimensions for a free and massless particle with Euclidean
metric is given by

LD = cΨ̄γµ∂µΨ, with Ψ̄ = Ψ†γ3, (4.30)

and the γ-matrices are represented by

γj = iσj , j ∈ {1, 2, 3}, (4.31)

such that

{γk, γl} = −2δkl. (4.32)

Again, c is considered to be a parameter for the fermion velocity. After some modifications,
Lfree2 has the same form as LD in Eq. (4.30). As a first step, the fermion fields are combined
to the spinors

Ψα(x) =

(
ψA,α(x)
ψB,α(x)

)
, Ψβ(x) =

(
ψA,β(x)
ψB,β(x)

)
. (4.33)

Furthermore, we multiply Lfree2 and LD with 1/vF and 1/c, respectively. This allows the

existence of a unitary transformation for the γj such that Lfree2 takes the form of LD under
the condition c = −vF . One should bear in mind, that the fermion velocity depends on the
hopping parameter t through vF = 3ta

2 . Therefore, c = −vF implies t → −t in the Hubbard
Hamiltonian. This only interchanges particles and holes but does not affect the physics of
the model. After these arrangements, the Lagrangian of Eq. (4.30) consists of two identically
structured terms which are both indeed equivalent to LD

Lfree2 = vF

(
Ψ̄αγµ∂µΨ

α + Ψ̄βγµ∂µΨ
β
)
. (4.34)





Chapter 5

Low-energy effective field theory for
magnons

In this section we investigate the low-energy physics of an undoped quantum antiferromagnet.
On the microscopic level such a system is described by the spin 1

2 Heisenberg Hamiltonian
with exchange coupling J > 0. We will first argue that quantum antiferromagnets are systems
featuring a spontaneous SU(2)s → U(1)s symmetry breakdown, which induces two massless
Goldstone bosons - the magnons. Since magnons are the lightest particles in the spectrum,
one may describe their low-energy physics by an effective field theory. We therefore present
the leading order effective action for the pure magnon sector of an antiferromagnet on the
honeycomb lattice. In the framework of QCD this corresponds to χPT, the low-energy effec-
tive field theory for pions. Afterwards, as in BχPT, a non-linear realisation of the SU(2)s
spin symmetry is constructed, disguising the global SU(2)s group to a local symmetry in
the unbroken subgroup U(1)s. It will later become clear that the procedure of a non-linear
realisation is an unavoidable step to couple the magnons to the holes in the final effective
theory.

5.1 Spontaneous symmetry breaking and the corresponding
effective theory for magnons

Spontaneous symmetry breaking occurs if the Hamiltonian features a continuous global sym-
metry, which is not shared by the ground state of the system. We have derived the quantum
Heisenberg model in Eq. (3.9) by investigating the U ≫ t limit of the Hubbard model. The
corresponding Hamiltonian exhibits a global SU(2)s symmetry, which can be proved by eval-
uating the commutator of ~S = 1

2

∑
x ~σx and H. This leads to

[H, ~S ] = 0. (5.1)

To illustrate the phenomenon of a spontaneous symmetry breakdown, let us naively assume
the specific Néel state of Eq. (3.11), with its corresponding direction of ~Ms, to be a ground
state of the Heisenberg Hamiltonian. The system has spontaneously selected this state from
the set of infinitely many ground states all related by an SU(2)s transformation. This spe-
cific Néel state, however, is not SU(2)s invariant. It only exhibits a U(1)s symmetry around
the accidental direction of ~Ms. We therefore conclude that quantum antiferromagnets are

33
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systems in which the global SU(2)s spin symmetry is spontaneously broken down to U(1)s
by the formation of a staggered magnetisation, i.e. 〈0| ~Ms|0〉 6= 0. As already mentioned in
section 3.1.1.2, we do not know the analytic ground state of the antiferromagnetic Heisen-
berg Hamiltonian in Eq. (3.9) and hence the existence of a spontaneously broken symmetry
is not evident. Numerical simulations, however, revealed the spontaneous SU(2)s → U(1)s
breakdown. Because the Hubbard model leads to the Heisenberg model in the strong cou-
pling limit, and thus features a spontaneous breakdown of a continuous global symmetry,
we are allowed to describe the low-energy sector of the Hubbard Hamiltonian by the use of
BχPT. On the other hand, the U(1)Q fermion number symmetry remains unbroken. This is
also the case in real materials until the antiferromagnet turns into the superconducting phase.

Goldstone’s theorem predicts for every spontaneously broken global and continuous symmetry
G a number of particles with zero mass and spin known as Goldstone bosons [54]. Goldstone
bosons are described by fields, which are elements of the coset space G/H. The number of
Goldstone boson fields is given by the dimension of G/H, which corresponds to the number
of generators of G that are not also generators of the unbroken subgroup H. In the case of a
spontaneously G = SU(2)s → H = U(1)s symmetry breakdown, the coset space is given by
the two-sphere

SU(2)s/U(1)s ≡ S2. (5.2)

There are

dim(SU(2)s) − dim(U(1)s) = 3 − 1 = 2 (5.3)

massless Goldstone bosons known as antiferromagnetic spin waves or magnons described by
the unit-vector field

~e(x) =
(
e1(x), e2(x), e3(x)

)
∈ S2, ~e(x)2 = 1, (5.4)

where x = (x1, x2, t) denotes a point in Euclidean space-time. The two magnon degrees
of freedom can be interpreted as two linearly independent spin wave fluctuation directions.
Since short distances correspond to high momenta, the effective field theory is a theory for a
macroscopic length scale and therefore does not account for behaviour at the lattice spacing
scale. Hence, the representation of the local ~Ms through ~e(x) within the scope of the field
theory only makes sense if ~Ms includes a large region of lattice sites x, e.g. at least 100 sites.

A global SU(2)s spin rotation is realised on the vector field ~e(x) by an ordinary R ∈ SO(3)s
rotation1

~e(x)′ = R~e(x). (5.5)

Since we consider spin as an internal quantum number, a global spin rotation does not affect
a space-time point x. The staggered magnetisation changes sign under a rotation O of 60
degrees. Since ~e(x) is the field theory representation of ~Ms, we therefore have

1Note that in general SO(3) ∼= SU(2)/Z(2) with SU(2) being the universal covering group of SO(3).
Moreover, there exists a mapping between an element g of SU(2) and a 3 × 3 matrix R ∈ SO(3) given by
Rkl = 1

2
Tr[g†σkgσl] with k, l ∈ {1, 2, 3} and σk,σl being Pauli matrices.
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O~e(x) = −~e(Ox), (5.6)

and thus O as a discrete symmetry is also spontaneously broken. Under shift Di and reflexion
symmetry R, the ~e(x) field transforms as

Di~e(x) = ~e(x),
R~e(x) = ~e(Rx). (5.7)

A space-time point x = (x1, x2, t) transforms under time-reversal T to Tx = (x1, x2,−t). On
the level of the microscopic theory, T acts as an anti-unitary operator. How T transforms the
microscopic fermion operators is investigated in [55]. In the framework of an Euclidean path
integral, the staggered magnetisation vector ~e(x) represents the microscopic spin operators
~Sx as a classical field. Since spin obeys the same commutation relations as a classical angular
momentum ~L = ~r × ~p, one is led to investigate how time-reversal acts on ~L and then deduce
the correct transformation behaviour of ~e(x). Under T the momentum ~p changes sign and
therefore T ~L = −~L. As a consequence, the staggered magnetisation behaves under time-
reversal as

T~e(x) = −~e(Tx). (5.8)

Note, that also T is a spontaneously broken symmetry. Since the ~e(x) field describes bosons,
it stays invariant under the fermion number symmetry SU(2)Q and its subgroup U(1)Q. This
holds for all magnon field representations in this chapter.

According to χPT we can write down an effective Lagrangian L0 for magnons, containing
as few derivatives acting on the ~e(x) fields as possible. At low energy, the antiferromagnetic
magnons show a relativistic dispersion relation (E ∝ p).2 Therefore, temporal and spatial
derivatives are counted on an equal footing in the derivative expansion. Since ~e(x) · ~e(x) = 1
and ~e(x) · ∂µ~e(x) = 0, the leading order terms of the pure magnon Lagrangian contain either
two temporal or two spatial derivatives. Using the above transformation laws of ~e(x), we
have constructed the leading order effective Euclidean action in the magnon sector for an
antiferromagnet on the honeycomb lattice. It is given by

S[~e ] =

∫
d2x dt L0 =

∫
d2x dt

ρs
2

(
∂i~e · ∂i~e+

1

c2
∂t~e · ∂t~e

)
, (5.9)

where we leave out the space-time argument x for notational simplification. The index
i ∈ {1, 2} indicates the two spatial directions. The Euclidean time direction is compacti-
fied to a circle S1 of circumference β = 1/T . For a square lattice, the leading order effective
Euclidean action was first derived in [56, 57] and is completely identical to Eq. (5.9). The
above action is fully determined by the two low-energy constants ρs, standing for the spin
stiffness, and c, denoting the spin wave (magnon) velocity. In fact, these two low-energy
constants depend on the properties of a specific material. Moreover, the energy scale, below
which the low-energy expansion is valid, is fixed by the spin stiffness. Since ρs and c contain
information from the high-energy regime of the underlying theory, they can not be deter-
mined within the framework of the effective field theory. Rather experiments or numerical

2In the low-energy regime, the ferromagnetic magnons are non-relativistic.
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simulations are used to fix ρs and c. Both low-energy constants are determined with high
precision for the square lattice [58], as well as for the honecomb lattice [16] by fitting Monte
Carlo data to the predictions of the effective theory.

Lattice ρs c

Square 0.1808(4)J 1.6585(10)Ja

Honeycomb 0.102(2)J 1.297(16)Ja

Table 5.1: Summary of the numerical results for ρs and c. J is the exchange coupling constant
of the Heisenberg Model and a denotes the lattice spacing.

The reduction of ρs and c on the honeycomb lattice, compared to the square lattice, are due to
larger spin fluctuations on the honeycomb lattice. This can be explained by the coordination
number z, which is smaller for the honeycomb than for the square lattice. The numerical
values for ρs and c are summarised in Tab. 5.1.

As a short interlude, let us briefly discuss the statement of Mermin, Wagner [59], Hohen-
berg [60], and Coleman [61] that there can be no spontaneous symmetry breaking for systems
in less than three dimensions. Prima facie, this seems to refuse the existence of magnons on
a two-space-dimensional lattice. At exactly zero temperature, however, Euclidean time, with
an extent inversely proportional to the temperature T , serves as a third dimension. There-
fore in fact, we deal with a (2 + 1)-dimensional system, in which spontaneously symmetry
breaking is allowed. For T > 0, the extent of the time dimension is finite and the magnons
pick up a mass, which is exponentially small in the inverse temperature [56]. The effective
field theory approach is then still valid as long as the magnons are the lightest particles in
the spectrum.

Once doped holes are included, instead of using the vector field ~e(x), it is more convenient to
represent the magnon field by a 2 × 2 matrix defined by

P (x) =
1

2

(
1 + ~e(x) · ~σ

)
=

1

2

(
1 + e3(x) e1(x) − ie2(x)

e1(x) + ie2(x) 1 − e3(x)

)
, (5.10)

where P (x) ∈ CP (1) ∼= S2 has the properties

P (x)† = P (x), TrP (x) = 1, P (x)2 = P (x), (5.11)

and therefore is a Hermitean projection matrix. In terms of P (x) the lowest order action for
magnons is formulated as

S[P ] =

∫
d2x dt ρsTr

[
∂iP∂iP +

1

c2
∂tP∂tP

]
. (5.12)

In contrast to the vector field ~e(x), a global SU(2)s spin rotation is realised on a CP (1)
magnon field by a unitary transformation with a 2 × 2 matrix g ∈ SU(2)s

P (x)′ = gP (x)g†. (5.13)
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Under an SU(2)s transformation, P (x) maintains its Hermitean projection properties P (x)′† =
P (x)′, TrP (x)′ = 1 and P (x)′2 = P (x)′. Using the cyclicity of the trace, Eq. (5.12) is obvi-
ously invariant under a global SU(2)s spin rotation.

We have already worked out how the magnon field ~e(x) transforms under the discrete sym-
metries Di, O, R, and T . These findings can then be used to determine the transformation
behaviour of the CP (1) magnon representation under these symmetries. A shift Di leaves the
magnon field P (x) invariant, i.e.

DiP (x) = P (x). (5.14)

Under a rotation of 60 degrees the staggered magnetisation ~Ms changes sign and therefore

OP (x) =
1

2

(
1− ~e(Ox) · ~σ

)
= 1− P (Ox). (5.15)

To ensure that P (x) ∈ CP (1) is a valid representation of ~e(x), OP (x) must be an element of
CP (1) as well. This is obviously the case in an SU(2) model where Tr1 = 2. The transfor-
mation property of Eq. (5.15) simplifies under the composed symmetry O′.The magnon field
then transforms under the unbroken symmetry O′ as

O′
P (x) = (iσ2)

OP (x)(iσ2)
† = P (Ox)∗. (5.16)

Since on a square lattice a shift Di along one lattice axis is a spontaneously broken symmetry,
the combined symmetry D′

i is considered. Reflexion symmetry R solely acts on the argument
of P (x)

RP (x) = P (Rx). (5.17)

We have already legitimised the transformation behaviour of e(x) under time-reversal T .
Except the change of the argument, ~e(x) shows exactly the same behaviour under T as under
rotation O. Consequently, under time-reversal T the CP (1) magnon field representation
transforms as

TP (x) = 1− P (Tx) = OP (O−1Tx). (5.18)

Since also T is a spontaneously broken symmetry, we will again encounter a composed trans-
formation, consisting of a regular time-reversal symmetry T and the specific spin rotation
g = iσ2 ∈ SU(2)s. This yields the unbroken, combined symmetry T ′. Under T ′ the magnon
field P (x) transforms as

T ′
P (x) = O′

P (O−1Tx). (5.19)

As the construction of an effective action demands, Eq. (5.15) is invariant under all these
symmetries.

5.2 Non-linear realisation of SU(2)s

How a general compact, connected, and semi-simple Lie group G is restricted by a non-linear
realisation to a continuous subgroup H, is investigated in [8,62]. For the purpose of coupling
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magnons to holes, one must construct a non-linear realisation of the spontaneously broken
G = SU(2)s spin symmetry, which then manifests itself as a local symmetry in the unbroken
subgroup H = U(1)s. To construct this local U(1)s transformation, which will finally act
on the hole fields, one first defines a local unitary transformation u(x) ∈ SU(2)s, which
diagonalises the CP (1) magnon field by a unitary transformation

u(x)P (x)u(x)† =
1

2
(11 + σ3) =

(
1 0
0 0

)
, u11(x) ≥ 0. (5.20)

Eq. (5.20) demands that the local field u(x) rotates an arbitrary magnon field configuration
P (x) into the specific configuration P = diag(1, 0). Using Eq. (5.10), it becomes clear that
P = diag(1, 0) corresponds to a constant vacuum field configuration ~e(x) = (0, 0, 1). To ensure
that u(x) is uniquely defined, we demand

u11(x) ≥ 0, u11(x) ∈ R. (5.21)

Without this restriction, u(x) is only defined up to a U(1)s phase. Since for every space-time
point x, u(x) turns ~e(x) into its vacuum field configuration, u(x) can be considered as a new,
unique matrix-valued representation of the magnon vector field ~e(x). A detailed construction
of u(x) can be found in [46,63]. Here we simply state the corresponding result, which makes
use of the magnon vector field ~e(x) in spherical coordinates

~e(x) =
(
sin θ(x) cosϕ(x), sin θ(x) sinϕ(x), cos θ(x)

)
. (5.22)

The field u(x) then takes the form

u(x) =
1√

2(1 + e3(x))

(
1 + e3(x) e1(x) − ie2(x)

−e1(x) − ie2(x) 1 + e3(x)

)

=

(
cos(θ(x)2 ) sin(θ(x)2 ) exp(−iϕ(x))

− sin(θ(x)2 ) exp(iϕ(x)) cos(θ(x)2 )

)
. (5.23)

We demand that under SU(2)s the magnon field u(x) obeys

u(x)′P (x)′u(x)′† = u(x)P (x)u(x)† =
1

2
(11 + σ3). (5.24)

Although u(x) in the form of Eq. (5.23) is now uniquely defined, it is not yet guaranteed
that after a global spin rotation u(x)′ is still unique. If one assumes u(x)′ = u(x)g† with
g ∈ SU(2)s to be the correct transformation, it is then possible that u11(x)

′ /∈ R>0 because
of picking up a possible U(1)s phase. To eliminate such a possible phase and therefore to
guarantee uniqueness, i.e. Eq. (5.21), we define the non-linear, local transformation h(x),
which takes the form

h(x) = exp
(
iα(x)σ3

)
=

(
exp(iα(x)) 0

0 exp(−iα(x))

)
∈ U(1)s. (5.25)

To get the correct SU(2)s transformation behaviour of the diagonalising field, we now have
to multiply the assumed transformation law suitably with h(x) to get
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u(x)′ = h(x)u(x)g†, u11(x)
′ ≥ 0, (5.26)

where g ∈ SU(2)s defines h(x) uniquely. With Eq. (5.26) and the fact that diagonal-matrices
commute, Eq. (5.24) is satisfied. Due to a non-linear realisation, the global SU(2)s symmetry
g now appears as a local transformation h(x) ∈ U(1)s

3 except the following case. If the
global spin rotation g itself is an element of the unbroken subgroup U(1)s, that is to say
g = diag

(
exp(iβ), exp(−iβ)

)
∈ U(1)s, the local transformation h(x) reduces to h(x) = g

and thus becomes linearly and globally realised. Note that the space-time dependence of
h(x) originates from the space-time dependence of the magnon field P (x). This magnon field
dependence is the characteristic property of the non-linear realisation.

We will now prove that the group structure of the global symmetry group SU(2)s is correctly
transfered to the unbroken subgroup U(1)s by the corresponding non-linear realisation. This
is the case when a composite transformation g = g2g1 ∈ SU(2)s leads to a composite trans-
formation h(x) = h2(x)h1(x) ∈ U(1)s, which then represents the SU(2)s group structure in a
local manner in the unbroken subgroup. Let us first perform the global SU(2)s transformation
g1, i.e.

P (x)′ = g1P (x)g†1, u(x)′ = h1(x)u(x)g
†
1, (5.27)

which defines the non-linear transformation h1(x). Now we perform the second global trans-
formation g2, which defines the non-linear transformation h2(x). That is

P (x)′′ = g2P (x)′g†2 = g2g1P (x)(g2g1)
† = gP (x)g†,

u(x)′′ = h2(x)u(x)
′g†2 = h2(x)h1(x)u(x)(g2g1)

† = h(x)u(x)g†. (5.28)

We identify h(x) = h2(x)h1(x) ∈ U(1)s and thus conclude that indeed the group structure of
SU(2)s is properly inherited to U(1)s by the non-linear realisation.

As discussed, the rotation symmetry O changes the sign of the ~e(x) field and is therefore a
spontaneously broken discrete symmetry. Under O the diagonalising field u(x) transforms as

Ou(x) =
1√

2(1 − e3(Ox))

(
1 − e3(Ox) −e1(Ox) + ie2(Ox)

e1(Ox) + ie2(Ox) 1 − e3(Ox)

)

=

(
sin(θ(Ox)2 ) − cos(θ(Ox)2 ) exp(−iϕ(Ox))

cos(θ(Ox)2 ) exp(iϕ(Ox)) sin(θ(Ox)2 )

)

= τ(Ox)u(Ox), (5.29)

3Formally this will become explicit when we consider the explicit transformation behaviour of a hole field
under a global spin rotation in section 6.2.
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with

τ(x) =
1√

e1(x)2 + e2(x)2

(
0 −e1(x) + ie2(x)

e1(x) + ie2(x) 0

)

=

(
0 − exp(−iϕ(x))

exp(iϕ(x)) 0

)
. (5.30)

Since the transformation matrix τ(x) depends on a specific configuration of u(x), which itself
depends on P (x) (remember u(x) diagonalises P (x)), it becomes clear, that also the rotation
symmetry O is realised in a non-linear manner and τ(x) plays the same role as h(x). Under
the combined symmetry O′ one finds O′

u(x) = h(Ox)Ou(x)g† with g = iσ2. The local
transformation h(x) then takes the form h(Ox) = (iσ2)τ(Ox)

† such that

O′
u(x) = (iσ2)τ(Ox)

†τ(Ox)u(Ox)(iσ2)
† = (iσ2)u(Ox)(iσ2)

† = u(Ox)∗. (5.31)

The combined symmetryO′ is not spontaneously broken and therefore magnon-field-independ-
ent or, equivalently, linearly realised. Comparing Eq. (5.31) with Eq. (5.29) again clarifies
why we introduced O′: The composed transformation O′ is easier to handle than the pure
rotation symmetry O.

Since time-reversal T is a spontaneously broken discrete symmetry in an antiferromagnet,
independent of any specific lattice structure, u(x) again transforms non-linearly under T .
One finds

Tu(x) = Ou(O−1Tx) = τ(Tx)u(Tx). (5.32)

On the other hand, the combined time-reversal T ′ is unbroken and therefore realised in a
linear manner, i.e.

T ′
u(x) = O′

u(O−1Tx) = u(Tx)∗. (5.33)

It remains to list the transformation behaviour of u(x) under the shift symmetry Di and the
reflexion symmetry R which leads to

Diu(x) = u(x),
Ru(x) = u(Rx). (5.34)

In an antiferromagnet on a square lattice the shift symmetry Di instead of O is spontaneously
broken and hence non-linearly realised.

5.2.1 Composite magnon field vµ(x)

In this section we introduce a matrix-valued SU(2)s vector field vµ, whose components couple
the magnon to the hole fields in the low-energy effective field theory. As a composite anti-
Hermitean field, vµ consists of the diagonalising field u(x) and therefore contains the necessary
information for a further representation of the magnon field. The vector field vµ is given by

vµ(x) = u(x)∂µu(x)
†, (5.35)
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and transforms under a global SU(2)s spin rotation as

vµ(x)
′ = h(x)u(x)g†∂µ[gu(x)

†h(x)†] = h(x)[vµ(x) + ∂µ]h(x)
†. (5.36)

The transformation properties of all the other symmetries of the Hubbard model can be
worked out by making use of the already elaborated transformation behaviour of u(x). One
finds

Di : Divµ(x) = vµ(x),

O : Ov1(x) = τ(Ox)1
2

(
v1(Ox) + ∂1 +

√
3v2(Ox) +

√
3∂2

)
τ(Ox)†,

Ov2(x) = τ(Ox)1
2

(
−

√
3v1(Ox) −

√
3∂1 + v2(Ox) + ∂2

)
τ(Ox)†,

Ovt(x) = τ(Ox)(vt(Ox) + ∂t)τ(Ox)
†,

O′ : O′
v1(x) = 1

2

(
v1(Ox)

∗ +
√

3v2(Ox)
∗),

O′
v2(x) = 1

2

(
−

√
3v1(Ox)

∗ + v2(Ox)
∗),

O′
vt(x) = vt(Ox)

∗,

R : Rv1(x) = v1(Rx),
Rv2(x) = −v2(Rx),
Rvt(x) = vt(Rx),

T : T vi(x) = τ(Tx)(vi(Tx) + ∂i)τ(Tx)
†,

T vt(x) = −τ(Tx)(vt(Tx) + ∂t)τ(Tx)
†,

T ′ : T ′
vi(x) = vi(Tx)

∗,
T ′
vt(x) = −vt(Tx)∗. (5.37)

The composite magnon field vµ is a 2 × 2 traceless and anti-Hermitean matrix and can thus
be expressed as a linear combination of Pauli matrices σa,

vµ(x) = ivaµ(x)σa = i

(
v3
µ(x) v+

µ (x)

v−µ (x) −v3
µ(x)

)
, a ∈ {1, 2, 3}, vaµ(x) ∈ R, (5.38)

where the factor i makes vµ(x) anti-Hermitean.4 The components vaµ(x) of the above decom-
position are given by

vaµ(x) =
1

2i
Tr [vµ(x)σa] . (5.39)

Note, that the components vaµ(x) are not independent degrees of freedom since they are
composed of magnon fields. Additionally, we define the fields

v±µ (x) = v1
µ(x) ∓ iv2

µ(x). (5.40)

Let us now investigate how the third component v3
µ(x) and the vector fields v±µ (x) transform

under a global SU(2)s spin rotation. By means of Eq. (5.25) and Eq. (5.36) one obtains

4The Pauli matrices form a basis in the space of traceless and Hermitean 2 × 2 matrices.
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v3
µ(x)

′ = v3
µ(x) − ∂µα(x),

v±µ (x)′ = exp(±2iα(x))v±µ (x). (5.41)

The above transformation laws reveal the ”gauge” character under U(1)s, leading to an
Abelian U(1)s gauge field behaviour of v3

µ(x). Due to an appropriate phase, the v±µ (x) behave
as vector fields charged under U(1)s. However, it should be pointed out, that SU(2)s is not
gauged in the standard way. In fact, the ”gauge” field behaviour of v3

µ(x) stems from the
non-linear realisation of SU(2)s.

The transformation properties of v3
µ(x) and v±µ (x) under the discrete symmetries of the Hub-

bard model are worked out with the aid of Eq. (5.37) and Eq. (5.38). We obtain

Di : Div3
µ(x) = v3

µ(x),

O : Ov3
1(x) = 1

2

(
− v3

1(Ox) + ∂1ϕ(Ox) −
√

3v3
2(Ox) +

√
3∂2ϕ(Ox)

)
,

Ov3
2(x) = 1

2

(√
3v3

1(Ox) −
√

3∂1ϕ(Ox) − v3
2(Ox) + ∂2ϕ(Ox)

)
,

Ov3
t (x) = −v3

t (Ox) + ∂tϕ(Ox),

O′ : O′
v3
1(x) = −1

2

(
v3
1(Ox) +

√
3v3

2(Ox)
)
,

O′
v3
2(x) = 1

2

(√
3v3

1(Ox) − v3
2(Ox)

)
,

O′
v3
t (x) = −v3

t (Ox),

R : Rv3
1(x) = v3

1(Rx),
Rv3

2(x) = −v3
2(Rx),

Rv3
t (x) = v3

t (Rx),

T : T v3
i (x) = −v3

i (Tx) + ∂iϕ(Tx),
T v3

t (x) = v3
t (Tx) − ∂tϕ(Tx),

T ′ : T ′
v3
i (x) = −v3

i (Tx),

T ′
v3
t (x) = v3

t (Tx) (5.42)

and
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Di : Div±µ (x) = v±µ (x),

O : Ov±1 (x) = − exp(∓2iϕ(Ox))1
2

(
v∓1 (Ox) +

√
3v∓2 (Ox)

)
,

Ov±2 (x) = exp(∓2iϕ(Ox))1
2

(√
3v∓1 (Ox) − v∓2 (Ox)

)
,

Ov±t (x) = − exp(∓2iϕ(Ox))v∓t (x),

O′ : O′
v±1 (x) = −1

2

(
v∓1 (Ox) +

√
3v∓2 (Ox)

)
,

O′
v±2 (x) = 1

2

(√
3v∓1 (Ox) − v∓2 (Ox)

)
,

O′
v±t (x) = −v∓t (Ox),

R : Rv±1 (x) = v±1 (Rx),
Rv±2 (x) = −v±2 (Rx),
Rv±t (x) = v±t (Rx),

T : T v±i (x) = − exp(∓2iϕ(Tx))v∓i (Tx),
T v±t (x) = exp(∓2iϕ(Tx))v∓t (Tx),

T ′ : T ′
v±i (x) = −v∓i (Tx),

T ′
v±t (x) = v∓t (Tx). (5.43)

The lowest order magnon action of Eq. (5.9) can now be reformulated in terms of the composite
magnon field vµ(x). It is given by

S[v±µ ] =

∫
d2x dt 2ρs

(
v+
i v

−
i +

1

c2
v+
t v

−
t

)
. (5.44)

At first sight, v+
µ v

−
µ looks like a mass term of a charged vector field. In fact, containing

derivatives acting on u(x), it is the kinetic term of a massless Goldstone boson. The magnon
action in Eq. (5.9) and Eq. (5.44) are equivalent, i.e. S[~e] = S[vµ]. Using Eq. (5.39) and
Eq. (5.23) one can work out

v1
µ(x) =

1

2

[
sin(θ(x)) cos(ϕ(x)) + ∂µθ(x) sin(ϕ(x))

]
,

v2
µ(x) =

1

2

[
sin(θ(x)) sin(ϕ(x)) − ∂µθ(x) cos(ϕ(x))

]
. (5.45)

Plugging Eq. (5.45) into

v+
µ v

−
µ = (v1

µ)
2 + (v2

µ)
2 (5.46)

and use Eq. (5.22) one gets

v+
µ v

−
µ =

1

4
(∂µe1∂µe1 + ∂µe2∂µe2 + ∂µe3∂µe3) =

1

4
∂µ~e · ∂µ~e (5.47)

and therefore indeed

S[~e ] = S[vµ]. (5.48)





Chapter 6

Identification of effective fields for
doped holes

In chapter 5 we have discussed the low-energy physics of a pure, i.e. undoped, quantum
antiferromagnet. A pure antiferromagnet corresponds to the vacuum or ground state in the
framework of the effective field theory. On the level of the Hubbard model, this charge
neutral state is realised through a half-filled system. The half-filled state of the Hubbard
model is the microscopic analogue of the Dirac sea in a relativistic quantum field theory. An
additional fermion in the state with µ = 0 is then denoted as an electron, while a fermion
removed from such a state represents a hole. Finally, we are interested in antiferromagnets
with a small amount of doped holes or, in correspondence to the above picture, removed
electrons. The low-energy effective action under construction, until now, consists of the pure
magnon sector and is thus an effective field theory for an undoped antiferromagnet. To include
the dynamics of holes and, in particular, their interaction through magnon exchange in the
effective description, we now derive the correct degrees of freedom for holes. This procedure
parallels the derivation of the fields for free Dirac fermions. Additionally, we now include
spin and, as an important intermediate step between microscopic and effective theory, we
couple the diagonalising magnon field u(x) to the fermion operator Cx of the Hubbard model.
It should be emphasised that the operators and fields introduced in the subsequent sections
describe combinations of electrons and holes. Therefore we generically denote these objects
by fermion operators or fields until we finally extract the effective hole fields by analysing
mass terms in section 6.5.

6.1 Momentum space pockets for doped holes

The transformation properties of the fields and therefore the final form of the effective La-
grangian depends on where in momentum space low-energy excitations are located. It is
therefore indispensable to know where in the Brillouin zone doped fermions occur. Because
we intend to construct an effective theory for holes, we focus on the question at which momenta
k in the Brillouin zone a single hole has its energy minima. The dispersion relation E(k) for
a single hole was simulated using a loop-cluster algorithm for the t-J model in [16]. Fig. 6.1
reveals that the circular shaped hole pockets are located at (±2π

3a ,± 2π
3
√

3a
) and (0,± 4π

3
√

3a
) in

the first Brillouin zone.

45
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Figure 6.1: The dispersion relation E(k)/t for a single hole in an antiferromagnet on the
honeycomb lattice simulated in the t-J model for J/t = 2. [16]

The position of the hole pockets is thus identical to the position of the Dirac cones in the
framework of the effective theory for free fermions discussed in chapter 4. Therefore, doped
holes occupy the same pockets α and β as the Dirac fermions do and the corresponding lattice
momenta are again given by

kα = −kβ = (0,
4π

3
√

3a
), (6.1)

with their periodic copies in the Brillouin zone. To formally address the final hole fields to
kα and kβ , we superimpose the same {A1, A2, A3} and {B1, B2, B3} sublattice structure on
the bipartite honeycomb lattice as discussed in section 4.2.1.

6.2 Discrete fermionic lattice operators with sublattice index

To establish an interface between microscopic operators and the final effective fermion fields,
we define appropriate fermionic lattice operators by coupling the diagonalising magnon field
u(x) of Eq. (5.20) to the 2 × 2 matrix-valued fermion operator Cx of Eq. ((3.26). Hence, we
introduce

ΨX
x = u(x)Cx, (6.2)

with x ∈ X, X ∈ {A1, A2, A3, B1, B2, B3}. For fermion operators on even sublattices one
then obtains

ΨX
x = u(x)

(
cx↑ c†x↓
cx↓ −c†x↑

)
=

(
ψXx,+ ψX

†

x,−
ψXx,− −ψX†

x,+

)
, x ∈ X,X ∈ {A1, A2, A3}, (6.3)

while on odd sublattices Eq. (6.2) is given by
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ΨX
x = u(x)

(
cx↑ −c†x↓
cx↓ c†x↑

)
=

(
ψXx,+ −ψX†

x,−
ψXx,− ψX

†

x,+

)
, x ∈ X,X ∈ {B1, B2, B3}. (6.4)

In the framework of the microscopic theory we have chosen the x3-axis to be a global spin
quantisation axis with ↑ and ↓ denoting the corresponding projection of S3

x. In a system
with a spontaneously broken SU(2)s spin symmetry, however, it is natural to introduce the
staggered magnetisation as a new, local quantisation axis. The +(−) notation then indicates
parallel (anti-parallel) spin alignment with respect to the direction of ~e(x). The operators
ψXx,± still obey canonical anticommutator relations. One should keep in mind, that u(x) in

this context is evaluated on discrete lattice sites. The above operators ΨX
x not only address

the six sublattices in coordinate space but also inherit the transformation properties from
the underlying microscopic operators of the Hubbard model. Eq. (6.2) then ensures, that the
non-linearly realised SU(2)s symmetry is implemented on the fermionic lattice operators as
a local transformation in the unbroken subgroup U(1)s. This will become clear by means of
Eq. (3.29), Eq. (5.26), and Eq. (6.2). We find

ΨX
x

′
= u(x)′C ′

x = h(x)u(x)g†gCx = h(x)ΨX
x , (6.5)

with h(x) ∈ U(1)s. Under SU(2)Q, Eq. (6.2) transforms as

~QΨX
x =

~Qu(x)
~QCx = u(x)CxΩ

T = ΨX
x ΩT . (6.6)

Also the discrete symmetries of the Hubbard model are implemented on the above fermionic
lattice operators by using the transformation properties of Cx and u(x) derived in section
3.2.6 and 5.2. One finds

Di : DiΨX
x = ΨDiX

x+ai
,

O : OΨX
x = τ(Ox)ΨOX

Ox σ3,

O′ : O′
ΨX
x = (iσ2)Ψ

OX
Ox σ3,

R : RΨX
x = ΨRX

Rx . (6.7)

The sublattices DiX, OX, and RX are obtained by shifting, rotating and reflecting sublattice
X. Since time-reversal acts as an anti-unitary operator in the microscopic framework, it is not
ensured to be correctly inherited by using Eq. (6.2). Thus, we do not yet list T and T ′. We
will afterwards use well defined time-reversal transformations T and T ′ on the final effective
fermion fields. On the level of the fermionic lattice operators ΨX

x , it is not yet necessary
to investigate the transformation properties of the components ψXx,±. We will do this in the

following chapter, when ΨX
x will be treated as a matrix-valued field.

6.3 Fermion fields with a sublattice index

In the final effective theory, doped holes will be described by anticommuting fields, i.e. Grass-
mann fields, in a Euclidean action. In the context of the effective theory for free fermions,
having no SU(2)s → U(1)s symmetry breaking and thus no non-linear realisation, we derived
the final fields by replacing the microscopic operators cXix by the continuum Grassmann fields
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ψXi(x). No interface like Eq. (6.2) was needed. Now, however, we substitute the fermionic
lattice operators of Eq. (6.3) and Eq. (6.4) by the matrix-valued continuum fields

ΨX(x) =

(
ψX+ (x) ψX†

− (x)

ψX− (x) −ψX†
+ (x)

)
, X ∈ {A1, A2, A3},

ΨX(x) =

(
ψX+ (x) −ψX†

− (x)

ψX− (x) ψX†
+ (x)

)
, X ∈ {B1, B2, B3}, (6.8)

consisting of Grassmann fields ψX± (x) instead of lattice operators ψXx,±. Again, the conjugated

fields ψX†
± (x) have to be treated as independent of ψX± (x). To avoid confusion with relativistic

theories, the conjugated fields are not denoted by ψ̄X± (x). For notational convenience we also
introduce

ΨX†(x) =

(
ψX†

+ (x) ψX†
− (x)

ψX− (x) −ψX+ (x)

)
, X ∈ {A1, A2, A3},

ΨX†(x) =

(
ψX†

+ (x) ψX†
− (x)

−ψX− (x) ψX+ (x)

)
, X ∈ {B1, B2, B3}, (6.9)

consisting of the same Grassmann fields as ΨX(x). Therefore, ΨX†(x) depends on ΨX(x).

In analogy to section 4.2.3, we postulate, that the matrix-valued fields ΨX(x) transform
exactly like their operator counterparts ΨX

x . This is the most rigorous connection we can
establish between the effective and the microscopic theory. This procedure leads to

SU(2)s : ΨX(x)′ = h(x)ΨX(x),

SU(2)Q :
~QΨX(x) = ΨX(x)ΩT ,

Di : DiΨX(x) = ΨDiX(x),

O : OΨX(x) = τ(Ox)ΨOX(Ox)σ3,

O′ : O′
ΨX(x) = (iσ2)Ψ

OX(Ox)σ3,

R : RΨX(x) = ΨRX(Rx),

T : TΨX(x) = τ(Tx)(iσ2)
[
ΨX†(Tx)T

]
σ3,

TΨX†(x) = −σ3

[
ΨX(Tx)T

]
(iσ2)

†τ(Tx)†,

T ′ : T ′
ΨX(x) = −

[
ΨX†(Tx)T

]
σ3,

T ′
ΨX†(x) = σ3

[
ΨX(Tx)T

]
. (6.10)

One recognises the SU(2)s⊗SU(2)Q symmetry behaviour of the matrix-valued fermion fields.
Now, the transformation behaviour under time-reversal T and T ′ are listed. The form of the
time-reversal symmetry T for an effective field theory with a non-linearly realised SU(2)s
symmetry can be deduced from the canonical form of time-reversal in the path integral of a
non-relativistic theory with a linearly realised spin symmetry. The fermion fields in the two
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formulations just differ by a factor u(x). Note, that an upper index T on the left denotes
time-reversal, while on the right it denotes transpose. By means of the transformation laws
from (6.10) one can now evaluate the transformation properties of the Grassmann-valued
components. They transform as

SU(2)s : ψX± (x)′ = exp(±iα(x))ψX± (x),

U(1)Q : QψX± (x) = exp(iω)ψX± (x),

Di : DiψX± (x) = ψDiX± (x),

O : OψX± (x) = ∓ exp(∓iϕ(Ox))ψOX∓ (Ox),

O′ : O′
ψX± (x) = ±ψOX∓ (Ox),

R : RψX± (x) = ψRX± (Rx),

T : TψX± (x) = exp(∓iϕ(Tx))ψX†
± (Tx),

TψX†
± (x) = − exp(±iϕ(Tx))ψX± (Tx),

T ′ : T ′
ψX± (x) = −ψX†

± (Tx),

T ′
ψX†
± (x) = ψX± (Tx). (6.11)

It should be emphasised, that SU(2)Q is displayed only on the matrix-valued fermion fields
ΨX(x). Since the spin as well as the staggered magnetisation gets flipped under time-reversal,
the projection of one onto the other remains invariant. It follows that + and − are not
interchanged under T and T ′.

6.4 Fermion fields with a sublattice and a momentum index

The effective degrees of freedom shall describe fermions located at the α or the β pocket in
momentum space. To impose this property on the fermion fields, they need an additional
momentum index f ∈ {α, β}. We achieve this by accomplishing again the discrete Fourier
transformation of Eq. (4.20) now with the matrix-valued fields from Eq. (6.8). This leads to
the same linear combinations of fields we already derived in the framework of free fermions
in section 4.2.2, i.e.

ΨA,α(x) =
1√
3

[
exp(i2π3 )ΨA1(x) + ΨA2(x) + exp(−i2π3 )ΨA3(x)

]
,

ΨA,β(x) =
1√
3

[
exp(−i2π3 )ΨA1(x) + ΨA2(x) + exp(i2π3 )ΨA3(x)

]
,

ΨB,α(x) =
1√
3

[
exp(i2π3 )ΨB1(x) + ΨB2(x) + exp(−i2π3 )ΨB3(x)

]
,

ΨB,β(x) =
1√
3

[
exp(−i2π3 )ΨB1(x) + ΨB2(x) + exp(i2π3 )ΨB3(x)

]
. (6.12)

The conjugated matrix-valued field combinations can be deduced by applying a †-operation
on Eq. (6.12). However, as already argued, these fields do not represent independent degrees
of freedom. Therefore, we do not list them explicitly. Formally, the Fourier transformed
matrix-valued fields of Eq. (6.12) can be written as
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ΨA,f (x) =
1√
3

3∑

n=1

exp(−ikfvn)ΨAn(x) =

(
ψA,f+ (x) ψA,f

′†
− (x)

ψA,f− (x) −ψA,f ′†+ (x)

)
,

ΨB,f (x) =
1√
3

3∑

n=1

exp(−ikfwn)ΨBn(x) =

(
ψB,f+ (x) −ψB,f ′†− (x)

ψB,f− (x) ψB,f
′†

+ (x)

)
, (6.13)

with their conjugated counterparts

ΨA,f†(x) =

(
ψA,f†+ (x) ψA,f†− (x)

ψA,f
′

− (x) −ψA,f ′+ (x)

)
, ΨB,f†(x) =

(
ψB,f†+ (x) ψB,f†− (x)

−ψB,f ′− (x) ψB,f
′

+ (x)

)
. (6.14)

The transformation properties of Eq. (6.12) are

SU(2)s : ΨX,f (x)′ = h(x)ΨX,f (x),

SU(2)Q :
~QΨX,f (x) = ΨX,f (x)ΩT ,

Di : DiΨX,f (x) = exp(ikfai)Ψ
X,f (x),

O : OΨA,α(x) = exp(−i2π3 )τ(Ox)ΨB,β(Ox)σ3,
OΨA,β(x) = exp(i2π3 )τ(Ox)ΨB,α(Ox)σ3,
OΨB,α(x) = exp(i2π3 )τ(Ox)ΨA,β(Ox)σ3,

OΨB,β(x) = exp(−i2π3 )τ(Ox)ΨA,α(Ox)σ3,

O′ : O′
ΨA,α(x) = exp(−i2π3 )(iσ2)Ψ

B,β(Ox)σ3,

O′
ΨA,β(x) = exp(i2π3 )(iσ2)Ψ

B,α(Ox)σ3,

O′
ΨB,α(x) = exp(i2π3 )(iσ2)Ψ

A,β(Ox)σ3,

O′
ΨB,β(x) = exp(−i2π3 )(iσ2)Ψ

A,α(Ox)σ3,

R : RΨX,f (x) = ΨX,f ′(Rx),

T : TΨX,f (x) = τ(Tx)(iσ2)
[
ΨX,f ′†(Tx)T

]
σ3,

TΨX,f†(x) = −σ3

[
ΨX,f ′(Tx)T

]
(iσ2)

†τ(Tx)†,

T ′ : T ′
ΨX,f (x) = −

[
ΨX,f ′†(Tx)T

]
σ3,

T ′
ΨX,f†(x) = σ3

[
ΨX,f ′(Tx)T

]
. (6.15)

For the Grassmann-valued components we read off
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SU(2)s : ψX,f± (x)′ = exp(±iα(x))ψX,f± (x),

U(1)Q : QψX,f± (x) = exp(iω)ψX,f± (x),

Di : DiψX,f± (x) = exp(ikfai)ψ
X,f
± (x),

O : OψA,α± (x) = ∓ exp(−i2π3 ) exp(∓iϕ(Ox))ψB,β∓ (Ox),

OψA,β± (x) = ∓ exp(i2π3 ) exp(∓iϕ(Ox))ψB,α∓ (Ox),

OψB,α± (x) = ∓ exp(i2π3 ) exp(∓iϕ(Ox))ψA,β∓ (Ox),

OψB,β± (x) = ∓ exp(−i2π3 ) exp(∓iϕ(Ox))ψA,α∓ (Ox),

O′ : O′
ψA,α± (x) = ± exp(−i2π3 )ψB,β∓ (Ox),

O′
ψA,β± (x) = ± exp(i2π3 )ψB,α∓ (Ox),

O′
ψB,α± (x) = ± exp(i2π3 )ψA,β∓ (Ox),

O′
ψB,β± (x) = ± exp(−i2π3 )ψA,α∓ (Ox),

R : RψX,f± (x) = ψX,f
′

± (Rx),

T : TψX,f± (x) = exp(∓iϕ(Tx))ψX,f
′†

± (Tx),

TψX,f†± (x) = − exp(±iϕ(Tx))ψX,f
′

± (Tx),

T ′ : T ′
ψX,f± (x) = −ψX,f ′†± (Tx),

T ′
ψX,f†± (x) = ψX,f

′

± (Tx). (6.16)

6.5 Identifying the final fields for holes

In this section, we construct the final effective fields, which describe a doped hole in an an-
tiferromagnet. So far, the matrix-valued fermion fields have a well defined transformation
property under SU(2)Q. Therefore, up to now, these fields may represent a combination of
electrons and holes. To impose this symmetry on the effective Lagrangian would result in a
theory containing electrons and holes at the same time. However, such an effective theory
is only valid for the Hubbard model at half-filling, where holes and electrons are present si-
multaneously.1 On the other hand, in real materials, as well as in the t-J model, either holes
or electrons do exist. From this it follows, that also our effective Lagrangian must describe
either doped holes or doped electrons. Such a Lagrangian, however, cannot maintain the
particle-hole symmetry of SU(2)Q. Only the U(1)Q fermion number symmetry remains. We
decided to construct a low-energy effective field theory for a hole doped antiferromagnet.

To determine the correct low-energy effective degrees of freedom for holes, we first have to
construct all possible mass terms invariant under the given symmetries. This procedure can
be performed in two different notations: The trace notation, using the matrix-valued fields
ΨX,f (x), or the component notation, using the Grassmann-valued fields ψX,f± (x). Let us
briefly discuss the assets and drawbacks of these two methods.2 The trace notation allows

1Remember: For µ 6= 0 the Hubbard Hamiltonian is SU(2)Q variant.
2The pros and cons of the trace- and the component notation are detailed discussed in [64].
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us to easily find expressions invariant under SU(2)Q, since this symmetry is only defined
on the matrix-valued fermion fields. The main difficulty of the trace notation is, however,
to eliminate all linear dependencies in a given class of terms, e.g. mass terms, arising from
the fact, that these notation is not unique. The main advantage of the component notation,
though, is its uniqueness. After the construction of all invariant expressions in a certain class
of terms, no linear dependencies remain. Thus, we first construct all mass terms in component
notation to evaluate how many independent expressions must remain using afterwards the
trace notation. We found that the class of mass terms consists of two linear independent
terms in which the fields are diagonal in all indices. With this knowledge, we then switched
to the trace notation, allowing us to implement the SU(2)Q symmetry. Of course, one still
has to ensure that all the found trace terms are linearly independent. The most general mass
terms then read

∑

f=α,β

1

2
Tr
[
M(ΨA,f†σ3Ψ

A,f − ΨB,f†σ3Ψ
B,f ) +m(ΨA,f†ΨA,fσ3 + ΨB,f†ΨB,fσ3)

]

=
∑

f=α,β

[
M
(
ψA,f†+ ψA,f+ − ψA,f†− ψA,f− + ψB,f†− ψB,f− − ψB,f†+ ψB,f+

)

+m
(
ψA,f†+ ψA,f+ + ψA,f†− ψA,f− + ψB,f†+ ψB,f+ + ψB,f†− ψB,f−

)]

=
∑

f=α,β

[(
ψA,f†+ , ψB,f†+

)( M +m 0
0 −M +m

)(
ψA,f+

ψB,f+

)

+
(
ψA,f†− , ψB,f†−

)( −M +m 0
0 M +m

)(
ψA,f−
ψB,f−

)]
. (6.17)

The term proportional to M is invariant under SU(2)Q. The expression proportional to m,
however, is only invariant under the U(1)Q fermion number symmetry and therefore breaks
SU(2)Q. To identify the correct fields for holes, we have to diagonalise the mass matrices.
However, since these matrices are already diagonal, we can directly read off the eigenvalues
±M + m. For m = 0 we have a particle-hole symmetric situation. The eigenvalue M
corresponds to the rest mass of the particles, while the rest mass of the holes corresponds
to the eigenvalue −M. The masses are shifted to ±M + m when we allow the SU(2)Q
breaking term (m 6= 0) and the particle-hole symmetry is currently destroyed. Hole fields
now correspond to the lower eigenvalue −M + m and are identified by the corresponding
eigenvectors

ψB,α+ (x), ψB,β+ (x), ψA,α− (x), ψA,β− (x).

One can show that indeed the hole fields of Eq. (6.18) and their conjugated counterparts do
form a closed set under the various symmetry transformations. We thus simplify the notation
since a hole with spin + (−) is always located on sublattice B (A). To avoid redundancy, we
therefore drop the sublattice index. The full set of independent low-energy degrees of freedom
describing a doped hole in an antiferromagnet on the honeycomb lattice then reads

ψα+(x) = ψB,α+ (x), ψβ+(x) = ψB,β+ (x), ψα−(x) = ψA,α− (x), ψβ−(x) = ψA,β− (x),

ψα†+ (x) = ψB,α†+ (x), ψβ†+ (x) = ψB,β†+ (x), ψα†− (x) = ψA,α†− (x), ψβ†− (x) = ψA,β†− (x). (6.18)
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Under the symmetries of the Hubbard model these fields transform as

SU(2)s : ψf±(x)′ = exp(±iα(x))ψf±(x),

U(1)Q : Qψf±(x) = exp(iω)ψf±(x),

Di : Diψf±(x) = exp(ikfai)ψ
f
±(x),

O : Oψα±(x) = ∓ exp(±i2π3 ∓ iϕ(Ox))ψβ∓(Ox),

Oψβ±(x) = ∓ exp(∓i2π3 ∓ iϕ(Ox))ψα∓(Ox),

O′ : O′
ψα±(x) = ± exp(±i2π3 )ψβ∓(Ox),

O′
ψβ±(x) = ± exp(∓i2π3 )ψα∓(Ox),

R : Rψf±(x) = ψf
′

± (Rx),

T : Tψf±(x) = exp(∓iϕ(Tx))ψf
′†

± (Tx),

Tψf†± (x) = − exp(±iϕ(Tx))ψf
′

± (Tx),

T ′ : T ′
ψf±(x) = −ψf ′†± (Tx),

T ′
ψf†± (x) = ψf

′

± (Tx). (6.19)

In analogy to BχPT, the SU(2)s symmetry is realised as a local transformation in the sub-
group U(1)s.

In order to extract the final hole fields, we have eliminated the electrons from the theory
and at the same time broken the particle-hole symmetry of SU(2)Q. Thus, the effective La-
grangian will solely be invariant under the U(1)Q fermion number symmetry. Since SU(2)Q
is then no longer a symmetry of our Lagrangian, we need not search for terms in trace nota-
tion. To extract low energy degrees of freedom describing doped electrons demands the same
procedure as we now applied for the holes. One first has to determine where in the Bril-
louin zone doped electrons occur. Afterwards, one performs the appropriate discrete Fourier
transformation to end up with matrix-valued fermion fields with sublattice and momentum
indices now addressing the electron pockets. The final electron fields are then identified by
the eigenvectors corresponding to the upper eigenvalue +M +m.

Even though SU(2)Q is now no longer a symmetry of the effective theory to be constructed,
the current chapter has shown that this symmetry is of central importance to identify the
correct fields for doped holes.





Chapter 7

Low-energy effective field theory for
magnons and holes

In analogy to χPT, we have constructed the leading order effective action for magnons in
section 5.1. After constructing the relevant degrees of freedom and their transformation
laws under the various symmetries of the microscopic models, we now additionally present
the leading order terms of a systematic low-energy effective field theory for doped holes.
Including holes in our effective description now corresponds to BχPT in QCD. The effective
Euclidean action in Eq. (5.9) is then extended to

S
[
ψf†± , ψ

f
±, ~e
]

=

∫
d2x dt

∑

nψ

Lnψ . (7.1)

The theory is now completely well-defined by the partition function

Z =

∫
Dψf†± Dψf±D~e exp

(
−S

[
ψf†± , ψ

f
±, ~e
])
. (7.2)

Remember, that nψ denotes the number of hole fields a given term in the Lagrangian Lnψ
contains. In section 5.1, we have already argued that in an antiferromagnet at low energy
E ∝ p for magnons. It follows from the t-J model simulation in [16] that holes have a
non-relativistic dispersion relation, i.e. E ∝ p2, close to the energy minimum. Therefore one
temporal derivative counts as two spatial derivatives. Up to O(p2) in the derivative expan-
sion, we thus only allow terms including at most one temporal or two spatial derivatives. Due
to the non-linear realisation of the SU(2)s spin symmetry, the magnon fields are coupled to
the hole fields through v3

µ(x) and v±µ (x). Since vµ(x) = u(x)∂µu(x)
†, both components v3

µ(x)
and v±µ (x) contain a ∂µ derivative which must be counted too.

If one intends to do loop-calculations within the effective Lagrangian framework, a reliable
power counting scheme is needed. This would guarantee a finite number of terms contributing
to each order in perturbation theory. A power counting scheme becomes essential as soon as
the magnon and the hole sector are mixed, i.e. hole fields are coupled to magnon fields. Due
to the different dispersion relations of magnons and holes, it is then not a priori determined
to which order in the derivative expansion a mixed term with v±t or v3

t belongs to. Consider

e.g. the expression ∂tψ
f†
± v

3
tψ

f
±. At first sight, this term is of O(p3) in the derivative expansion.

The time derivative acting on the hole field is of O(p2) and the time derivative acting on the

55
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magnon field in v3
t is of O(p). However, we are free to let the time derivative from v3

t act

on ψf± by partial integration. In this case, ∂tψ
f†
± v

3
tψ

f
± suddenly is of O(p4). To determine

the order of a certain term, we conventionally act with all derivatives on the hole fields.
The power counting scheme in BχPT for B = 1, the analogue of doping one hole into the
antiferromagnet, has been developed in [65]. In the pure magnon (pion) sector (B = 0) a
reliable power counting was developed by J. Gasser and H. Leutwyler in [66]. For B ≥ 2 a
general power counting scheme is still missing. Recent developments can be found in [67].
The absence of a correct power counting method in the effective field theory for magnons and
holes, however, does not affect the calculations for the spiral phases.

7.1 Effective action for magnons and holes

In Eq. (5.9) we established the leading order effective Lagrangian in the pure magnon sector

L0 =
ρs
2

(
∂i~e · ∂i~e+

1

c2
∂t~e · ∂t~e

)
. (7.3)

We are now using the final hole fields and their conjugated counterparts of Eq. (6.18) to
construct the hole sector (nψ > 2) of the above effective action. As discussed in section 4.3,

each terms consists of as many ψX,f†± (x) as ψX,f± (x) fields. Otherwise, uncompensated phase
factors would remain after applying a U(1)Q transformation. The Lagrangian with two hole
fields up to O(p2) in the derivative expansion takes the form

L2 =
∑

f=α,β
s=+,−

[
Mψf†s ψ

f
s + ψf†s Dtψ

f
s +

1

2M ′Di ψ
f†
s Diψ

f
s

+ Λψf†s (isvs1 + σfv
s
2)ψ

f
−s + iK

[
(D1 + isσfD2)ψ

f†
s (vs1 + isσfv

s
2)ψ

f
−s

− (vs1 + isσfv
s
2)ψ

f†
s (D1 + isσfD2)ψ

f
−s
]

+ σfLψ
f†
s ǫijf

3
ijψ

f
s +N1ψ

f†
s v

s
i v

−s
i ψfs

+ isσfN2

(
ψf†s v

s
1v

−s
2 ψfs − ψf†s v

s
2v

−s
1 ψfs

)]
. (7.4)

We have introduced the field strength tensor of the composite Abelian ”gauge” field which is
defined by

f3
ij(x) = ∂iv

3
j (x) − ∂jv

3
i (x). (7.5)

Again

σf =

{
1 f = α

−1 f = β
, (7.6)

and the covariant derivatives in Eq. (7.4) are given by
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Dtψ
f
±(x) =

[
∂t ± iv3

t (x) − µ
]
ψf±(x),

Diψ
f
±(x) =

[
∂i ± iv3

i (x)
]
ψf±(x)

Dtψ
f†
± (x) =

[
∂t ∓ iv3

t (x) − µ
]
ψf†± (x),

Diψ
f†
± (x) =

[
∂i ∓ iv3

i (x)
]
ψf†± (x). (7.7)

The chemical potential µ enters the covariant time-derivative like an imaginary constant vec-
tor potential for the fermion number symmetry U(1)Q. It should be pointed out, that these
covariant derivatives are introduced due to the non-linear realisation of the SU(2)s spin sym-
metry. They are not there as a result of a canonical SU(2) gauge procedure. Being low-energy
constants, M and M ′ denote the rest and the kinetic mass of a hole. Since our effective theory
is a non-relativistic theory, in general, M and M ′ are not equal. In [16], a simulation on the
honeycomb lattice with 3456 spins and J/t = 2.0 results in M ′ = 4.1(1)/ta2 for the kinetic
mass. The term proportional to 1/2M ′ describes the propagation of a free hole with lattice
momenta in the α or β pocket as well as magnon exchange processes between two holes.
In section 6.1 of [55] it is shown that v±µ contributes to a single magnon exchange between
two holes while v3

µ contributes to a two-magnon exchange. The expressions proportional to
the low-energy coupling constants Λ and K both describe magnon exchange interactions but
are not of the same order in the derivative expansion. Since v±i contributes only one spa-
tial derivative, the Λ-term is the leading hole-one-magnon exchange contribution to L2. The
K-term contains two spatial derivatives and is therefore of O(p2). The parameters L, N1

and N2 are low-energy couplings for hole-two-magnon exchanges. The appropriate terms are
of O(p2). All low-energy constants in Eq. (7.4) are real-valued and, due to the factor i in
front of K and N2, L2 leads to a Hermitean Hamiltonian. It is straightforward to show that
terms of the form ψf†± Diψ

f
± add up to zero under O′. Also the effective Lagrangian containing

magnons and holes is only valid for energy values small compared to ρs.

There exists no L-term in the effective L2 for holes on the square lattice. Using the symmetry
transformations of the hole fields on the square lattice, we have proved that such a term is
forbidden by D′

i, R, and T ′.

The dispersion relation for a single free hole up to O(p2) can be derived from L2 and is given
by

Ef (p) = M +
p2
i

2M ′ + O(p4), (7.8)

which is the canonical dispersion relation for a free, non-relativistic particle.1 Note that
p = (p1, p2) is defined relative to the center of the hole pockets. Eq. (7.8) confirms that the
two pockets α and β indeed show up circular shape which is in agreement with the simulation
of the t-J model discussed in section 6.1.

Furthermore, we constructed the leading order of L4. This contribution to the Lagrangian
consists of terms describing short-ranged contact interactions between holes. Since we are

1A derivation of the dispersion relation in the framework of the spiral phases can be found in appendix A.
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more interested in the long-range interaction physics, we restrict ourselves to terms with four
hole fields and no derivatives. The leading order of L4 is then given by

L4 =
∑

s=+,−

{G1

2
(ψα†s ψ

α
s ψ

α†
−sψ

α
−s + ψβ†s ψ

β
s ψ

β†
−sψ

β
−s)

+G2ψ
α†
s ψ

α
s ψ

β†
s ψ

β
s +G3ψ

α†
s ψ

α
s ψ

β†
−sψ

β
−s

}
. (7.9)

The low-energy fermion coupling constants G1, G2, and G3 again are real-valued. As a con-
sequence of the Pauli principle, all terms with two identical hole fields vanish. Therefore an

expression like ∝∑s=+,−

(
ψα†s ψαs ψ

α†
s ψαs + ψβ†s ψ

β
sψ

β†
s ψ

β
s

)
, although invariant under all sym-

metries, does not enter the Lagrangian. Furthermore, the Pauli principle sets an upper bound
to the value of nψ. Since there are eight different hole fields, nψ ≤ 8 in terms without deriva-
tives, otherwise these terms are zero.

7.2 Accidental symmetries

Accidental symmetries are symmetries only present in some order of the effective Lagrangian
because these symmetries are not shared by the underlying microscopic models. The following
two accidental global symmetries are present just in some leading order terms of the effective
action and are thus broken explicitly at higher orders in the derivative expansion.

7.2.1 Galilean boost symmetry

Real materials emerge from a dynamical formation of their crystal lattice. Due to this process,
translation and Galilean invariance are spontaneously broken. The corresponding Goldstone
bosons are known as phonons. It is expected that the formation of Cooper pairs in the HTSC
regime can not be understood by taking into account only phonons. Therefore, these Gold-
stone bosons are not included in our effective field theory. In fact, the underlying Hubbard
and t-J model do not describe phonons since they are based on a rigid lattice structure im-
posed by hand. This leads to an explicitly broken Galilean symmetry on the level of the
microscopic models. Nevertheless, for c → ∞ and without the term proportional to iK in
L2, Eq. (7.3), Eq. (7.4), and Eq. (7.9) feature an accidental Galilean boost symmetry. This
symmetry acts on the magnon and hole fields as

G : GP (x) = P (Gx), Gx = (x1 − v1t, x2 − v2t, t),

Gψf±(x) = exp(−pfi xi + ωf t)ψf±(Gx),

Gψf†± (x) = exp(pfi xi − ωf t)ψf†± (Gx),
Gv3

i (x) = v3
i (Gx),

Gv3
t (x) = v3

t (Gx) − viv
3
i (Gx),

Gv±i (x) = v±i (Gx),
Gv±t (x) = v±t (Gx) − viv

±
i (Gx). (7.10)

The invariance only holds under the conditions
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pf1 = M ′v1, pf2 = M ′v2, and ωf =
(pfi )

2

2M ′ . (7.11)

The Galilean boost velocity v can be derived alternatively by means of the hole dispersion
relation in Eq. (7.8) and vi = dEf/dpfi . Although the Galilean boost symmetry is explicitly
broken at higher orders of the derivative expansion, this symmetry has physical implications.
Without a loss of generality, the leading one-magnon exchange between two holes can be
investigated in their rest frame.2

7.2.2 Continuous O(γ) rotation symmetry

Except the term proportional to iK, L2 of Eq. (7.4) as well as L4 of Eq. (7.9) are invariant
under a continuous spatial rotation by an angle γ. We denote this accidental symmetry by
O(γ). The involved fields transform under O(γ) as

O(γ)ψf±(x) = exp(isσf
γ
2 )ψf±(O(γ)x),

O(γ)v1(x) = cos γ v1(O(γ)x) + sin γ v2(O(γ)x),
O(γ)v2(x) = − sin γ v1(O(γ)x) + cos γ v2(O(γ)x) (7.12)

with

O(γ)x = O(γ)(x1, x2, t) = (cos γ x1 − sin γ x2, sin γ x1 + cos γ x2, t). (7.13)

Here, vi denotes the composite magnon field. This symmetry is not present in the Λ-term
of the square lattice. The O(γ) invariance has some interesting implications for the spiral
phases we will discuss in chapter 8.

2Magnon induced two-hole bound states are discussed in [39].
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Chapter 8

Spiral phases of a lightly
hole-doped antiferromagnet on the
honeycomb lattice

In this chapter we consider an antiferromagnet with a homogeneously distributed, small
amount of doped holes. A homogeneous hole density can be achieved, when the compos-
ite magnon vector field vi(x) constitutes a constant magnon background field for the doped
fermions. For simplicity, we restrict ourselves to time-independent variations, i.e. vt(x) = 0.
Such a uniform background field, however, does not restrict the local staggered magnetisa-
tion ~e(x) to a constant configuration. Moreover, it has been proven in [36,37] that the most
general configuration of ~e(x) in a homogeneously doped antiferromagnet is a spiral. A spiral
is characterised as a helical spin state with the staggered magnetisation vector rotating in the
(x1, x2)-plane. With the same methods as for the square lattice, we now investigate spiral
phases in a hole-doped antiferromagnet on the honeycomb lattice, however, we will not include
4-fermion terms in our discussions. In addition to the following calculations, the influence
of the 4-fermion contact interaction terms onto spiral phases has been considered in [17] by
using first order perturbation theory. It will be interesting to see that possible spirals do
not have a preferred spatial propagation direction. This feature stems from the accidental
continuous O(γ) symmetry in the leading order of the corresponding effective Lagrangian for
the honeycomb lattice and is therefore not present in the square lattice case.

We start by introducing a composite magnon vector field which is constant up to a local
U(1)s ”gauge” transformation. We will then show that an undoped antiferromagnet leads to
a homogeneous phase of the staggered magnetisation. This proves that doping is indeed a
necessary ingredient for a possible spiral configuration. Afterwards, the energy of a single hole
in an antiferromagnet is derived from the appropriate fermionic Hamiltonian. A variational
calculation then allows us to investigate potential spiral phases depending on the low-energy
constants of the effective field theory.

63
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8.1 Spirals within a constant composite magnon vector field
vi(x)′

Let us first specify what we mean by a constant magnon background field. Due to the
non-linear realisation of SU(2)s, the effective Lagrangian for magnons and holes exhibits in-
variance under a local U(1)s ”gauge” transformation. We therefore make use of this ”gauge”
freedom by setting the vi(x) to constants up to a ”gauge” transformation α(x). Using
Eq. (5.23), Eq. (5.39), and the transformation laws of v3

µ(x) and v±µ (x) in Eq. (5.41) we
thus have

v3
i (x)

′ = v3
i (x) − ∂iα(x) = sin2

(
θ(x)

2

)
∂iϕ(x) − ∂iα(x) = c3i ,

v±i (x)′ = v±i (x) exp(±2iα(x))

=
1

2

[
sin θ(x)∂iϕ(x) ± i∂iθ(x)

]
exp(∓i(ϕ(x) − 2α(x))) = c±i , (8.1)

with c3i and c±i indicating the constant magnon background field. The quantities c3i and c±i are
also denoted as spiral parameters. We now restrict our further investigations to a particular
class of spiral configurations parameterised by

θ(x) = θ0, ϕ(x) = kixi. (8.2)

From Eq. (8.1) we thus identify

vt(x) = 0, v3
i (x) = ki sin

2

(
θ0
2

)
, v±i (x) =

ki
2

sin θ0 exp(∓ikixi). (8.3)

To achieve

c+i = c−i = ci ∈ R, (8.4)

we choose the gauge transformation α(x) to be

α(x) =
1

2
ϕ(x) =

1

2
kixi. (8.5)

By the use of Eq. (8.5) one then obtains

vt(x)
′ = 0, v3

i (x)
′ = v3

i (x) − ∂iα(x) = ki(sin
2

(
θ0
2

)
− 1

2
) = c3i ,

v±i (x)′ = v±i (x) exp(±2iα(x)) =
ki
2

sin θ0 = ci, (8.6)

and therefore the condition of Eq. (8.4) is satisfied. Remember that ~e(x) ∈ S2 and hence the
direction of the staggered magnetisation vector is determined by the two angles θ(x) and ϕ(x).
The above choice of a constant θ(x) ensures a spiral plane always parallel to the equatorial
plane of S2. The vector k = (k1, k2) defines the direction along which the spiral is oriented.
According to [36,37], the wave-number or spiral pitch is given by
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|k| = 2
√
c3i c

3
i + cici =

2π

λ
, with

ci
c3i

= a, a ∈ R. (8.7)

Eq. (8.7) determines the velocity of the spiral and the wavelength λ of a spiral is given by the
spatial distance between two equally oriented staggered magnetisation vectors ~e(x). A system
is said to be in a homogeneous phase when ki = ci = 0. The above constraint ci/c

3
i = a then

implies c3i = 0 and therefore the spiral pitch vanishes.

8.2 Homogeneous phase in the undoped antiferromagnet

Since we do not allow any variation in time, the leading order in the energy density of the
pure magnon sector ǫm is given by the first term of L0 in Eq. (5.9). Including the above
treatments, ǫm takes the form

ǫm =
ρs
2
∂i~e(x) · ∂i~e(x) = 2ρsv

+
i (x)v−i (x) = 2ρs(c

2
1 + c22) =

ρs
2

(k2
1 + k2

2) sin2 θ0. (8.8)

A minimisation of ǫm with respect to the spiral parameters ci leads to ci = 0 and therefore
to a vanishing spiral pitch k, i.e. ϕ(x) = 0. The staggered magnetisation vector ~e(x) thus
points homogeneously in one direction in S2 determined by the angle θ0. This result implies
that a spiral phase of ~e(x) indeed must be induced by doping. A homogeneous magnon field
configuration in coordinate space is depicted in Fig. 8.1.

Figure 8.1: The homogeneous phase with a constant ~e(x) in coordinate space.
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8.3 Homogeneous versus spiral phase in a hole-doped antifer-
romagnet

In order to investigate homogeneous or spiral phases of ~e(x) in an antiferromagnet with
uniformly doped holes, we proceed according to the subsequent variational calculation scheme:

1. We calculate the energy of a single doped hole.

2. The energy density of all the holes doped into the system ǫh is minimised, while the
total density of holes n is kept fixed. Hence, we have to solve a variational problem with
constraints. As usual, this will be done by means of a Lagrange multiplier. During this
procedure the spiral parameters remain unaffected.

3. The total energy density of the system ǫ is then minimised by a variation with respect
to |c| =

√
c21 + c22.

Even though the most general configuration of the staggered magnetisation ~e(x), assuming
a constant magnon background field, is proven to be a spiral, it is energetically not always
the most favorable. Moreover, the values of the low-energy constants ρs, M

′, and Λ will
determine whether ~e(x) will be in a homogeneous or a spiral phase.

8.3.1 Fermionic contribution to the energy

In order to compute the energy of a single hole, we have to derive the fermionic Hamiltonian
H, acting as an operator in a Hilbert space, from the classical Lagrangian L2. In this thesis
we neglect the 4-fermion couplings and we only involve the hole-one-magnon exchange term
proportional to Λ which is of O(p) in the derivative expansion. The terms proportional to
K, L, N1, and N2 are of O(p2) and thus negligible. To derive the fermionic Hamiltonian
from the leading order of L2, we disregard all terms with a time-derivative, and we replace
the Grassmann fields by the creation and annihilation operators Ψf†

s and Ψf
s with flavour

f ∈ {α, β} and spin s ∈ {+,−}. These fermion operators obey standard anticommutation
relations. The appropriate Hamiltonian is then given by

H =

∫
d2x

∑

f=α,β
s=+,−

[
MΨf†

s Ψf
s +

1

2M ′DiΨ
f†
s DiΨ

f
s + ΛΨf†

s (isvs1 + σfv
s
2)Ψ

f
−s
]
, (8.9)

with the spatial covariant derivatives

DiΨ
f
±(x) =

[
∂i ± iv3

i (x)
]
Ψf

±(x),

DiΨ
f†
± (x) =

[
∂i ∓ iv3

i (x)
]
Ψf†

± (x). (8.10)

Again, σα = 1 and σβ = −1. The Hamiltonian of Eq. (8.9) and therefore the energy of a
doped hole is invariant under time-independent, local U(1)s ”gauge” transformations

Ψf
±(x)′ = exp(±iα(x))Ψf

±(x),

v3
i (x)

′ = v3
i (x) − ∂iα(x),

v±i (x)′ = v±i (x) exp(±2iα(x)). (8.11)
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We are thus allowed to choose α(x) according to Eq. (8.5) obtaining a constant magnon
background field for the doped holes, i.e.

v3
i (x)

′ = c3i , v±i (x)′ = ci, c3i , ci ∈ R. (8.12)

It is important to state once again that the local U(1)s symmetry is not a regular gauge trans-
formation. In fact, the non-linear realisation of the global SU(2)s symmetry leads to the local
gauge behaviour of U(1)s. In general, it is therefore not true that every local transformation
α(x) corresponds to a global spin rotation of SU(2)s. However, since the energy of a hole is
a physical quantity, and therefore a gauge invariant quantity, we are in this case completely
free in our choice of α(x) even though the corresponding choice may not represent an SU(2)s
spin rotation. We make use of this freedom in Eq. (8.5). The gauge freedom, however, is
restricted as soon as we consider gauge variant quantities. In this case, α(x) must correspond
to a global SU(2)s spin rotation.

In appendix A we diagonalise the Hamiltonian by transforming Eq. (8.9) into momentum
space. The transformed Hamiltonian can afterwards be considered separately for f = α and
f = β since the Λ-term does not mix the flavours. On the other hand, the direction of the spin
s gets flipped under magnon exchange. The Hamiltonian for a single hole with momentum
p = (p1, p2) is given by

Hf (p) =

(
M +

(pi−c3i )2
2M ′ Λ(ic1 + σfc2)

Λ(−ic1 + σfc2) M +
(pi+c3i )

2

2M ′

)
. (8.13)

Diagonalising Hf (p) leads to the energy eigenvalues

Ef±(p) = M +
p2
i + (c3i )

2

2M ′ ±

√(
pic3i
M ′

)2

+ Λ2|c|2. (8.14)

In contrast to the energy eigenvalues derived in the square lattice case, the above Ef± relation
is independent of the flavour index f . Nevertheless, we keep f as an index to be aware of
involving two flavours in our calculations. Note, that the indices ± of Ef± no longer indicate
the projection of the spin onto the staggered magnetisation vector because the eigenvectors
corresponding to Ef± are linear combinations of hole fields with different spin orientations.
The index +(−) now refers to a state with higher(lower) energy. Eq. (8.14) has a minimum
at p = (0, 0) for which

Ef±(0) = M +
(c3i )

2

2M ′ ± |Λ||c|. (8.15)

Because ǫm is independent of c3i , we determine c31 and c32 by minimising Ef−(0). This leads to
c31 = c32 = 0. By investigating the corresponding Hesse-matrix and M ′ > 0, we showed that
Eq. (8.14) indeed has a local minimum at (p1, p2, c

3
i ) = (0, 0, 0). Eq. (8.14) then simplifies to

Ef±(p) = M +
p2
i

2M ′ ± |Λ||c|. (8.16)

By a possible field redefinition one can always achieve Λ > 0 and therefore |Λ| = Λ. Eq. (8.6)
with c3i = 0 leads to sin2(θ02 ) = 1

2 . This implies θ0 = ±π
2 and therefore it is energetically most
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favoured that ~e(x) rotates in the equatorial plane of S2.

Let us now point out an essential difference regarding possible spiral phases between the
honeycomb and the square lattice. The above energy eigenvalues depend on |c|. The wave
number of the spiral with c3i = 0 is given by |k| = 2|c|. Thus, potential spiral configurations
of ~e(x) will solely depend on the norm of k and therefore do not prefer any particular spatial
direction. This effect stems from the accidental continuous O(γ) symmetry of the Λ-term
discussed in section 7.2.2. One should bear in mind that this symmetry is only a feature of
the leading terms in the effective action for holes and is explicitly broken at higher orders in
the derivative expansion. It is therefore expected that a spiral gets a preferred propagation
direction once one includes higher order terms. The Λ-term in the leading order effective
Lagrangian for holes on the square lattice does not exhibit the O(γ) symmetry. Hence, the
energy eigenvalues do not just depend on |c| but on c1 and c2. From this it follows that in
the case of a square lattice a spiral is oriented along a specific direction.

It follows from Eq. (8.16) that filled hole pockets P f± are circles defined by

p2
i

2M ′ = T f±, (8.17)

where T f± denotes the kinetic energy of a hole in the pocket P f± at the Fermi surface. The
Fermi radius is then given by

|p| =

√
2M ′T f±. (8.18)

In the first Brillouin zone, the circular shape of a hole pocket results from collecting the three
pieces of a circular area at each equivalent point together. The hole density in a certain
pocket nf± is given by the corresponding occupied area in momentum space

nf± =
1

(2π)2

∫

P f±

d2p =
1

2π
M ′T f±, (8.19)

and the kinetic energy density of a filled pocket is determined by

tf± =
1

(2π)2

∫

P f±

d2p
p2
i

2M ′ =
1

4π
M ′T f±

2
. (8.20)

The total density of holes including all pockets reads

n = nα+ + nα− + nβ+ + nβ− =
1

2π
M ′(Tα+ + Tα− + T β+ + T β−), (8.21)

and the total energy density of the holes is

ǫh = ǫα+ + ǫα− + ǫβ+ + ǫβ−, (8.22)

with

ǫf± =
1

(2π)2

∫

P f±

d2p Ef±(p) = (M ± Λ|c|)nf± + tf±. (8.23)



8.3. Homogeneous versus spiral phase in a hole-doped antiferromagnet 69

The kinetic energy of a hole, i.e. the parameter T f±, determines the filling of the various
pockets. According to step two in the variational calculation scheme we now minimise ǫh by
varying T f±, while we keep n fix. We therefore introduce

S ≡ ǫh − µn, (8.24)

with µ being a Lagrange multiplier which fixes the density of the holes. The variation demands

∂S

∂T f±
=

1

2π
M ′(M ± Λ|c| + T f± − µ) = 0. (8.25)

The constraint of a fixed hole density will be incorporated as a further equation. Together
with the system of equations in Eq. (8.25), the parameters T f± and µ can then be related to
the low-energy constants M , M ′, and Λ as well as |c| and n. Afterwards, the relations for

T f± are plugged into the expression for the total energy density of the system ǫ. According to
step three in our scheme, we then minimise the total energy density by varying with respect
to |c|. Once the minimum is found, we are left with an expression which depends only on the
fermion density and the low-energy constants. It is then determined by the values of ρs, M

′,
and Λ which configuration of the staggered magnetisation ~e(x) is energetically favourable and
how many pockets are filled. Remember, that we always consider a small amount of doped
holes. Let us now populate the different pockets with holes.

8.3.2 Four populated hole pockets

In this subsection we populate all four hole pockets P f±. Eq. (8.25) and the constraint of a
fixed n then leads to

µ = M +
πn

2M ′ , T f± =
πn

2M ′ ∓ Λ|c|. (8.26)

In that case the total energy density of the system is given by

ǫ = ǫ0 + ǫm + ǫh

= ǫ0 + 2ρs|c|2 + ǫα+ + ǫα− + ǫβ+ + ǫβ−

= ǫ0 + 2ρs|c|2 +Mn+
πn2

4M ′ −
1

π
M ′Λ2|c|2

=

(
2ρs −

1

π
M ′Λ2

)
|c|2 + ǫ0 +Mn+

πn2

4M ′ . (8.27)

Here ǫ0 denotes the energy density of an undoped antiferromagnet. Under the restriction
2πρs > M ′Λ2, the parabola of Eq. (8.27) has a minimum for |c| = 0 . The energy density is
bounded from below and the configuration of the staggered magnetisation is homogeneous.
Therefore, in the (x1, x2)-plane, we have a constant unit-vector field for ~e(x), which corre-
sponds to the situation in Fig. 8.1. Each of these vectors points in the same direction in the
equatorial plane of S2. The minimised energy density with four populated hole pockets then
takes the form

ǫ4 = ǫ0 +Mn+
πn2

4M ′ . (8.28)
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With the constraint 2πρs < M ′Λ2, however, the parabola of the energy density has a max-
imum for |c| = 0 and is therefore not bounded from below. Since the energy density in this
case has no minimum, |c| seems to grow to infinity. According to Eq. (8.26), this would lead

to the physically meaningless situation of a negative kinetic energy T f+ < 0, i.e. a negatively
filled f+- pocket. Moreover, a continuously growing |c| would induce an arbitrarily small λ
and thus the ~e(x) vector becomes a fast rotating object. However, once the wavelength en-
ters the range of a few lattice spacings, the effective field theory approach is not valid any
more because short distances are associated with high energies. What actually happens for
2πρs < M ′Λ2 is that the system empties both hole pockets with energy index +. Nevertheless,
for completeness, we will now discuss the case where three hole pockets are occupied.

8.3.3 Three populated hole pockets

In this subsection we discuss the case of three filled hole pockets. In addition to the pockets
with Eα− and Eβ−, the pocket with the higher energy Eα+ is populated. Since Ef± is in fact
independent of f , one could also choose to fill the β+-pocket. The total density of holes is
then given by

n = nα+ + nα− + nβ− =
1

2π
M ′(Tα+ + Tα− + T β−), (8.29)

and the contribution of the holes to ǫ reads

ǫh = ǫα+ + ǫα− + ǫβ−. (8.30)

According to Eq. (8.25), the variation yields

µ = M +
2πn

3M ′ −
Λ

3
|c|, Tα+ =

2πn

3M ′ −
4Λ

3
|c|, Tα− = T β− =

2πn

3M ′ +
2Λ

3
|c|, (8.31)

and the total energy density can be derived as

ǫ = ǫ0 + ǫm + ǫh = ǫ0 + 2ρs|c|2 + ǫα+ + ǫα− + ǫβ−

= ǫ0 + 2ρs|c|2 +

(
M − Λ

3
|c|
)
n+

πn2

3M ′ −
2

3π
M ′Λ2|c|2

=

(
2ρs −

2

3π
M ′Λ2

)
|c|2 − Λn

3
|c| + ǫ0 +Mn+

πn2

3M ′ . (8.32)

Under the constraint 3πρs > M ′Λ2, the parabola of ǫ is bounded from below and the energy
density is minimised for

|c| =
π

4

Λn

3πρs −M ′Λ2
. (8.33)

Hence, the staggered magnetisation ~e(x) picks up a spiral phase with wave number

|k| = 2|c| =
π

2

Λn

3πρs −M ′Λ2
. (8.34)
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A spiral phase of ~e(x) is depicted in Fig. 8.2. The minimised energy density with three
populated hole pockets then reads

ǫ3 = ǫ0 +Mn+
π

3M ′

(
1 − 1

8

M ′Λ2

3πρs −M ′Λ2

)
n2. (8.35)

Because

ǫ3 − ǫ4 =
n2π(Λ2M ′ − 2πρs)

8M ′(Λ2M ′ − 3πρs)
> 0, (8.36)

under the condition 2πρs > M ′Λ2, the spiraling phase of ~e(x) in the three pocket case is
energetically less favourable than the homogeneous phase due to four filled hole pockets. For
2πρs < M ′Λ2, however, Tα+ < 0 which again represents an unphysical situation. In reality,
the α+-pocket gets completely emptied.

Figure 8.2: The staggered magnetisation ~e(x) in a spiral phase with helical structure.

8.3.4 Two populated hole pockets

Under the condition 2πρs < M ′Λ2 the system completely empties both pockets with higher
energies. Therefore, we now investigate the case when the two pockets with Eα− and Eβ− are
filled with holes. The corresponding hole density reads

n = nα− + nβ− =
1

2π
M ′(Tα− + T β−), (8.37)

and the contribution to the total energy takes the form

ǫh = ǫα− + ǫβ−. (8.38)

Varying with respect to T f− and including the constraint of a fixed n leads to
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µ = M +
πn

M ′ − Λ|c|, Tα− = T β− =
πn

M ′ . (8.39)

The total energy density then reads

ǫ = ǫ0 + ǫm + ǫh = ǫ0 + 2ρs|c|2 + ǫα− + ǫβ−

= ǫ0 + 2ρs|c|2 + (M − Λ|c|) n+
πn2

2M ′

= 2ρs|c|2 − Λn|c| + ǫ0 +Mn+
πn2

2M ′ . (8.40)

Since ρs > 0, the parabola of ǫ is bounded from below without any restriction on the low-
energy constants. Eq. (8.40) is minimised at

|c| =
Λ

4ρs
n. (8.41)

Again, the staggered magnetisation is in a spiral phase with spiral pitch

|k| = 2|c| =
Λ

2ρs
n. (8.42)

Using Eq. (8.41), the minimised total energy takes the form

ǫ2 = ǫ0 +Mn+

(
π

2M ′ −
Λ2

8ρs

)
n2. (8.43)

For 2πρs > M ′Λ2, four filled pockets lead to a homogeneous phase of ~e(x). This phase is more
stable than the spiral phase from the two-pocket case since

ǫ2 − ǫ4 =
n2

8M ′ρs

(
2πρs − Λ2M ′) > 0, (8.44)

with 2πρs > M ′Λ2. In contrast to the three- and the four-pocket situations, which become
physically meaningless for 2πρs < M ′Λ2, the spiral phase of the two-pocket case still makes
sense under this condition.

8.3.5 One populated hole pocket

Finally, we consider the case where the pocket with energy states Eα− is filled with holes.
Alternatively one could also populate the β−-pocket. The density is given by

n = nα− =
1

2π
M ′Tα− , (8.45)

and the contribution to ǫ simply reduces to

ǫh = ǫα−. (8.46)

The variation leads to

µ = M +
2πn

M ′ − Λ|c|, Tα− =
2πn

M ′ . (8.47)
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The total energy density then takes the form

ǫ = ǫ0 + ǫm + ǫh = ǫ0 + 2ρs|c|2 + ǫα−

= ǫ0 + 2ρs|c|2 + (M − Λ|c|) n+
πn2

M ′

= 2ρs|c|2 − Λn|c| + ǫ0 +Mn+
πn2

M ′ . (8.48)

Like in the two-pocket case, the parabola is bounded from below because ρs > 0. The total
energy density ǫ is minimised at

|c| =
Λ

4ρs
n. (8.49)

Thus, the staggered magnetisation picks up a spiral phase with wave number

|k| = 2|c| =
Λ

2ρs
n. (8.50)

The minimised energy is given by

ǫ1 = ǫ0 +Mn+

(
π

M ′ −
Λ2

8ρs

)
n2. (8.51)

Since

ǫ1 − ǫ2 =
πn2

2M ′ > 0, (8.52)

the spiral due to one filled pocket is always energetically less favourable than the spiral in the
two-pocket case.





Chapter 9

Conclusions and outlook

In close analogy to baryon chiral perturbation theory, we have constructed a systematic low-
energy effective field theory for magnons and holes in an antiferromagnet on the honeycomb
lattice. Apart from basic properties of field theories such as locality, unitarity and causality,
the key ingredients of an effective field theory are symmetries. Therefore, we have started this
thesis by investigating the symmetry properties of the underlying honeycomb lattice which,
in contrast to the square lattice, belongs to the family of non-Bravais lattices. In general,
an effective field theory describes the low-energy physics of an underlying microscopic model.
In this thesis, it is assumed that the Hubbard model serves as a reliable microscopic theory
describing antiferromagnetism. Because the final effective Lagrangian for magnons and holes
must inherit the symmetries of the Hubbard Hamiltonian, a symmetry analysis, now incorpo-
rating the microscopic model, has been worked out in chapter 3. A symmetry of the Hubbard
model at half-filling, which plays a particular role in the identification of the final effective
hole fields, is the so-called pseudo-spin symmetry SU(2)Q. This symmetry is a non-Abelian
extension of the U(1)Q fermion number symmetry and relates the particle and the hole sector
in a symmetric way. The SU(2)Q symmetry, however, is in fact not present in real materials.
Before discussing the particular role of SU(2)Q in the context of the identification procedure
of the final hole fields, we will first review the investigation of the weakly coupled Hubbard
model.

Motivated by graphene, a two-dimensional, semi-metallic graphite monolayer consisting of
carbon atoms on a honeycomb lattice, we have investigated the weak coupling limit of the
Hubbard model at half-filling by additionally allowing a next-to-nearest neighbour hopping
parameter t′ 6= 0. For a Coulomb repulsion U = 0, the corresponding Hamiltonian has been
diagonalised analytically. By expanding the corresponding dispersion relations, we have con-
firmed that the low-energy excitations of graphene are indeed free, massless relativistic Dirac
fermions occurring in the vicinity of the six Dirac points in the Brillouin zone. Interest-
ingly, although breaking the particle-hole symmetry of SU(2)Q, non-zero values of t′ did not
destroy the Dirac cones and, as a conclusion, the Dirac fermions remain massless for all t
and t′. The fermion velocity vF = 3ta

2 has been derived and with the aid of some specific
unitary transformations, we have shown the equivalence between the quantum mechanical
Dirac Hamiltonian for a massless particle and the half-filled Hubbard Hamiltonian for t′ = 0
and U = 0 at low energies. By addressing effective fields to the same pockets as in the
theory for magnons and holes, we have identified the correct low-energy degrees of freedom
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and their symmetry behaviour to construct an effective field theory for free Dirac fermions.
According to the prediction of the microscopic theory, the resulting leading order effective
Lagrangian indeed contains no mass terms. Once again, the effective field theory approach
has thus demonstrated its power. However, to bring our low-energy description closer to real
graphene, one additionally has to include spin and contact interaction terms including more
than two fermion fields. To conclude, we have shown that the effective Lagrangian Lfree2 is
equal to the Euclidean metric Dirac Lagrangian in (2 + 1)-dimensions for a free and massless
particle.

Quantum antiferromagnets exhibit a spontaneous SU(2)s → U(1)s symmetry breakdown.
In the case of an undoped antiferromagnet, the low-energy physics is therefore dominated
by magnons, two linearly independent massless Goldstone boson excitations resulting from
spontaneous symmetry breaking. We have constructed the leading order effective action for
magnons in an antiferromagnet on the honeycomb lattice, which is fully determined by the
two low-energy constants c and ρs. It turned out, that the corresponding Lagrangian is equal
to the effective Lagrangian in the pure magnon sector derived for the square lattice. In order
to couple doped holes to the magnons, the global SU(2)s spin symmetry is afterwards realised
non-linearly as a local symmetry in the unbroken subgroup U(1)s. A non-trivial step is the
identification of the low-energy degrees of freedom that describe doped holes. We have estab-
lished an interface between microscopic and effective field theory by introducing a discrete
fermionic lattice operator with sublattice index ΨX

x = u(x)Cx. This step guarantees that the
non-linearly realised SU(2)s symmetry is implemented on the effective hole fields as a local
U(1)s symmetry. Moreover, ΨX

x is able to address the new sublattice structure which has
been imposed on the honeycomb lattice to properly address the fermion fields to the hole
pockets at lattice momenta kα = −kβ = (0,±4π/(3

√
3a)) in the first Brillouin zone. Until

now, the fermion fields may consist of a combination of electrons and holes. As a next step,
in order to describe doped holes with the effective Lagrangian, we therefore have broken the
SU(2)Q symmetry by the identification of the final hole fields. This has been done by di-
agonalising mass matrices containing SU(2)Q-variant and SU(2)Q-invariant terms. The hole
fields have then been identified as the eigenvectors corresponding to the lower eigenvalue.
Once the symmetry properties of the final hole fields are worked out, it is straightforward to
construct the leading order effective Lagrangian. In chapter 7 we have presented the effective
Lagrangian with two hole fields up to O(p2) in the derivative expansion as well as the leading
order effective Lagrangian containing four hole fields and no derivatives. The latter describes
short-ranged contact interactions between holes. Each term in the Lagrangian is multiplied
with a low-energy constant, which depends on material properties. The leading order effective
action then enters the corresponding Euclidean path-integral.

In the second part of this thesis, the low-energy effective field theory for magnons and holes has
served as an instrument to investigate possible spiral phases of the staggered magnetisation
~e(x) in an antiferromagnet on the honeycomb lattice with a small amount of homogeneously
doped holes. To achieve a constant magnon background field, and hence a homogeneous hole
density, we have restricted ourselves to a composite magnon vector field vi(x), which is con-
stant up to a local U(1)s ”gauge” transformation. Under this condition, the proof in [36,37]
predicts a spiral to be the most general configuration of ~e(x). A minimisation of the magnonic
contribution to the total energy density has revealed that doping is a necessary condition for
a potential spiral phase of ~e(x). To derive the dispersion relation of a single hole Ef± in the
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pocket P f± (f ∈ {α, β}), we have diagonalised the U(1)s transformed fermionic Hamiltonian
neglecting the vertices K, L, N1, and N2. By means of a variational calculation with con-
straints, we have afterwards calculated an expression for the total energy density of a doped
antiferromagnet which depends on the low-energy constants ρs, M

′, and Λ. The values of
these constants then determine whether a homogeneous or a spiral phase of ~e(x) is energeti-
cally favoured, and which pockets are filled with holes. We have found that for 2πρs > M ′Λ2

the staggered magnetisation ~e(x) is in a homogeneous phase and all four pockets are filled. On
the other hand, for 2πρs < M ′Λ2, the staggered magnetisation ~e(x) is in a spiral phase and

the two pockets with lower energy values Eα− and Eβ− are filled with holes. We have seen that
possible spiral phases only depend on the wave number |k| and are therefore independent of
any particular spatial direction. This is due to the accidental O(γ) symmetry of the involved
Λ-term from L2. The O(γ) symmetry is not present in the Λ-term of L2 for holes on the
square lattice. As a result, spiral configurations of ~e(x) show a preferred spatial propagation
direction. However, higher order terms in the effective Lagrangian explicitly break the O(γ)
symmetry.

To conclude this thesis, let us outline two possible future projects in the framework of
low-energy effective field theories for doped antiferromagnets:

Real antiferromagnets are in general not clean systems. They may contain irregularities, e.g.
missing sites, in their lattice structure. In addition, also doped holes or electrons can be the
source of such impurities. The doped entities then locate themselves on the impurities, which
may be the origin for a phase separation between antiferromagnetism and superconductivity.
To bring the effective description closer to reality, one therefore could additionally incorporate
impurities in an effective field theory for holes and electrons. It will then be interesting to
investigate interaction processes between impurities and electrons or holes.

Another future task could be the construction of a systematic low-energy effective field theory
for antiferromagnets with an underlying geometrically frustrated lattice, e.g. the triangular
or the kagome lattice. The fact that these materials are frustrated, leads to a lack of unbiased
numerical results in the single-fermion sector. Even at half-filling, simulations of microscopic
models on such lattice structures are afflicted by a severe sign-problem. It is therefore difficult
to determine the exact position of the fermion pockets in momentum space by simulating the
microscopic Hamiltonian. Eventually, in addition, experimental results must be considered
too in order to find out where in momentum space doped electrons or holes have their energy
minima. After the pockets are located, the necessary effective degrees of freedom and their
symmetry properties can be worked out to finally construct the effective action in the same
manner as for the square and the honeycomb lattice.

In this thesis we have layed the groundwork for potential future studies in these directions.
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Appendix A

Construction of the fermionic
Hamiltonian in momentum space

In this appendix, a detailed construction of the single hole Hamiltonian Hf (p) in Eq. (8.13)
is presented. Throughout the following calculation, we use the notation

x = (~x, t) = (x1, x2, t), p = (~p,E(~p )) = (p1, p2, E(~p )). (A.1)

We start with the fermionic Hamiltonian H of Eq. (8.9)

H =

∫
d2x

∑

f=α,β
s=+,−

[
MΨf†

s Ψf
s +

1

2M ′DiΨ
f†
s DiΨ

f
s + ΛΨf†

s (isvs1 + σfv
s
2)Ψ

f
−s
]
. (A.2)

In order to get

v3
i (x)

′ = c3i , v±i (x)′ = ci, c3i , ci ∈ R, (A.3)

we now perform a time-independent, local U(1)s gauge transformation on H leading to

H ′ =

∫
d2x

∑

f=α,β
s=+,−

[
MΨf†′

s Ψf ′
s +

1

2M ′DiΨ
f†′
s DiΨ

f ′
s + ΛΨf†′

s (isc1 + σf c2)Ψ
f ′

−s
]
, (A.4)

with the covariant derivatives

DiΨ
f ′

s (x) =
[
∂i + isc3i

]
Ψf ′

s (x),

DiΨ
f†′
s (x) =

[
∂i − isc3i

]
Ψf†′
s (x). (A.5)

For notational convenience, we neglect the primes in the subsequent considerations. The
Fourier decomposition of the fermion operators Ψf

s (x) and Ψf†
s (x) is defined as

Ψf
s (x) =

1

(2π)2

∫
d2p Ψ̃f

s (~p, t) exp(−i~p · ~x) =
1

(2π)2

∫
d2p Ψ̃f

s exp(−i~p · ~x),

Ψf†
s (x) =

1

(2π)2

∫
d2p Ψ̃f†

s (~p, t) exp(i~p · ~x) =
1

(2π)2

∫
d2p Ψ̃f†

s exp(i~p · ~x). (A.6)
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The covariant derivative acts on the operator Ψf
s as

DiΨ
f
s = ∂iΨ

f
s + isc3iΨ

f
s

= ∂i
1

(2π)2

∫
d2p Ψ̃f

s exp(−i~p · ~x) + isc3i
1

(2π)2

∫
d2p Ψ̃f

s exp(−i~p · ~x)

=
1

(2π)2

∫
d2p (−ipi)Ψ̃f

s exp(−i~p · ~x) + isc3i
1

(2π)2

∫
d2p Ψ̃f

s exp(−i~p · ~x)

=
1

(2π)2

∫
d2p (−ipi + isc3i )Ψ̃

f
s exp(−i~p · ~x). (A.7)

Performing a similar calculation for Ψf†
s yields

DiΨ
f†
s =

1

(2π)2

∫
d2p (ipi − isc3i )Ψ̃

f†
s exp(i~p · ~x). (A.8)

Because we do not include 4-fermion contact interaction terms, H is diagonal in the flavour
index f . The above Hamiltonian can therefore be separated for each flavour α and β. By
means of the Eqs. (A.6), (A.7), and (A.8) the Hamiltonian for a flavour f then reads

Hf =
1

(2π)4

∫
d2x

∫
d2p

∫
d2p′

∑

s=+,−
exp(i(~p − ~p ′)~x)

×
{[
MΨ̃f†

s Ψ̃f
s +

1

2M ′ Ψ̃
f†
s (ipi − isc3i )(−ip′i + isc3i )Ψ̃

f
s

+ ΛΨ̃f†
s (isc1 + σf c2)Ψ̃

f
−s
]}
. (A.9)

After using

1

(2π)2

∫
d2x exp(i(~p − ~p ′)~x) = δ(2)(~p− ~p ′), (A.10)

we perform the integration over p′ to obtain

Hf =
1

(2π)2

∫
d2p

∑

s=+,−

[
MΨ̃f†

s Ψ̃f
s +

1

2M ′ Ψ̃
f†
s (pi − sc3i )

2Ψ̃f
s + ΛΨ̃f†

s (isc1 + σf c2)Ψ̃
f
−s
]

=
1

(2π)2

∫
d2p

[
MΨ̃f†

+ Ψ̃f
+ +

1

2M ′ Ψ̃
f†
+ (pi − c3i )

2Ψ̃f
+ + ΛΨ̃f†

+ (ic1 + σf c2)Ψ̃
f
−

+MΨ̃f†
− Ψ̃f

− +
1

2M ′ Ψ̃
f†
− (pi + c3i )

2Ψ̃f
− + ΛΨ̃f†

− (−ic1 + σfc2)Ψ̃
f
+

]
. (A.11)

We now rewrite Hf in spinor notation to identify Hf (~p ). One gets

Hf =
1

(2π)2

∫
d2p

[(
Ψ̃f†

+ , Ψ̃
f†
−

)
Hf (~p )

(
Ψ̃f

+

Ψ̃f
−

)]
, (A.12)

with
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Hf (~p ) =

(
M +

(pi−c3i )2
2M ′ Λ(ic1 + σf c2)

Λ(−ic1 + σf c2) M +
(pi+c

3
i )

2

2M ′

)
. (A.13)

Up to notational conventions in the argument,Hf (~p ) is equal to the Hamiltonian in Eq. (8.13).

One should keep in mind, that Ψ̃f
s = Ψ̃f

s (~p, t) is still a U(1)s gauge transformed field. A di-
agonalisation of Hf leads to the energy eigenvalues of Eq. (8.14)

Ef±(~p ) = M +
p2
i + (c3i )

2

2M ′ ±

√(
pic3i
M ′

)2

+ Λ2|c|2. (A.14)
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