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Abstract

In my bachelor thesis, I present an introduction to the new material graphene, a mono molec-
ular layer of graphite with hexagonal structure. Based on the microscopic Hubbard model
as well as on the Dirac equation in a effective low-energy theory, I describe the motion of
massless, relativistic, quasi-free Dirac fermions on the graphene lattice. First, I develop in
both cases a Hamiltonian which I diagonalize in a second step for extracting the dispersion
relation. Furthermore, I extend both Hamiltonians in the case of an external magnetic field
to describe graphene’s behavior in a magnetic flux.
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Chapter 1

Introduction

The aim of this bachelor thesis is to give an introduction to the electronic properties of
graphene as well as to graphene’s behavior in an external magnetic field perpendicular to it.
After a brief motivation in the following section 1.1, we will work out the basic properties of
graphene in chapter 2 and focus on the geometry of the 2D honeycomb lattice. In chapter 3,
we first develop a Hamiltonian based on the single-band Hubbard model for describing the
electron motion on the graphene lattice in a microscopic manner. Furthermore in chapter 4,
we describe the electron motion on the graphene lattice, this time at low energy by developing
the Hamiltonian in the framework of an effective theory. Moreover, in this chapter we explain
why the interacting electrons in graphene are characterized by massless, relativistic Dirac
fermions and present first evidence thereof. Finally, in chapter 5, we extend the developed
Hamiltonians to incorporate an external magnetic field. First, we consider the microscopic
model of chapter 3 with an additional magnetic field. In a second step, we introduce the
magnetic field in the effective theory of chapter 4, as well, and interpret the consequences. It
turns out, that a magnetic field applied to graphene gives rise to discrete Landau levels which
are essentially important in the explanation of a anomalous quantum Hall effect in graphene.

1.1 General Facts and Historical Aspects

A very important element for life is the carbon atom C [1]. It is one of the most abundant
elements in the universe as well as in the Earth’s crust. It is also found in all known life forms.
Therefore, it is not astonishing that carbon is called the chemical basis of life. By considering
carbon-based systems we find several structures which bond their carbon atoms in different
manners, we call them allotropes. The relatively well-known allotropes of carbon are diamond
and graphite. Both are made of carbon atoms but have different properties. Diamond is an
extremely hard dielectric material and crystallizes in a cubic system. It consists of four sp3

hybridised orbitals, i.e. all outer four valence electrons of the carbon atom permit covalent
bondings to four other carbon atoms. In other words, they are all localised between the atoms
in covalent bonding and form a tetrahedral geometry. However, graphite is one of the softest
material and crystallizes in a hexagonal system. It consists of three sp2 hybridised orbitals
and is an electric conductor. As we can see, both allotropes have nearly opposite properties.
Let us consider graphite in more detail. It is made of several weakly bonded planar layers
where the carbon atoms are arranged in a hexagonal structure. This is the result of the
sp2 hybridised orbitals. Every carbon atom of this allotrope uses only three of its four

1



2 CHAPTER 1. INTRODUCTION

outer electrons in covalent bonding to three other carbon atoms. Therefore, they arrange
themselves in a plane and form a strongly bonded, planar lattice with hexagonal structure.
Unlike diamond, we see that each carbon atom in graphite has one delocalized electron. It
is free to move through the entire plane. For this reason, graphite conducts electricity only
along the planes of carbon atoms.
We understand the link between graphite and graphene by looking at history. In 1859,
the chemist Benjamin C. Brodie prepared graphite oxide by treating graphite with strong
oxidizers so that the distance between several layers became much larger and irregular. In
basic solutions, the graphite oxide finally disperses and yields mono-molecular sheets, known
as graphene oxide. At that time, Brodie was already thinking about a tear-resistant graphite
oxide paper [2]. In 1962, Hanns-Peter Boehm published his study on few-layer graphene
and formed the expression graphene, a mono-molecular layer of carbon atoms arranged in a
planar hexagonal lattice [3]. During the 20th century, hundreds of researchers have entered
this area until 2004. In that year, Andre Geim and Konstantin Novoselov realised the first
method to produce mono-molecular graphene layers by graphite oxide reduction. By referring
to Boehm’s forming of the expression, Geim describes graphene with the following words:

”graphene is stronger and stiffer than diamond, yet can be stretched by a quarter of its
length, like rubber. Its surface area is the largest known for its weight.” - Andre Geim

In 2010, Geim and Novoselov were awarded the Nobel Prize in Physics for Groundbreaking
Experiments Regarding the Two-Dimensional Material graphene [4].
After this historical introduction, it is important to mention the difference between the
graphene lattice and other crystal lattices. In quantum field theory and statistical mechanics,
the Mermin-Wagner theorem states that a 2D lattice can not stay stable at finite tempera-
ture [5]. Fluctuations persuade the crystal lattice to roll up or to agglutinate. In the case of
graphene, these fluctuations are suppressed by anharmonic couplings between bending and
stretching modes in the lattice. It is argued that graphene is not flat but a ripped 2D lattice
[6].
We can see in Fig. 1.1, graphene can be understood as a 2D building material for carbon
materials of all other dimensions. With a 2D lattice like graphene, it is possible to build up
materials of 0D, 1D and 3D.

Figure 1.1: graphene (Fig.a) can be stacked into 3D graphite (Fig.b), rolled into 1D nanotubes (Fig.c) or
wrapped up into 0D Fullerenes (Fig.d). [7]
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In summary, graphene is harder than diamond but flexible like a piece of iron sheet and a
much better conductor of electricity than other materials. With such properties, graphene
could revolutionize the whole micro- and computer-technology (see chapter 6).





Chapter 2

Properties of the Honeycomb
Lattice

In this chapter we start by discussing general properties of the graphene lattice which are
used in further chapters. On this account, we consider an infinite 2D graphene lattice, i.e. a
lattice which is made up of carbon atoms arranged in a hexagonal manner like a honeycomb
(see Fig. 2.1). We neglect here the aspect of ripping and consider a flat honeycomb lattice.
As commonly done in solid state physics (see e.g. [8]), we identify the unit cell as well as the
primitive vectors of the honeycomb lattice. In a second step, we construct the first Brillouin
zone with the according primitive vectors of the reciprocal lattice and briefly discuss some
symmetries of the honeycomb lattice. Finally, we calculate the normalizing constant for the
hexagonal lattice in the Fourier transform which links the position space with the momentum
space, i.e. the discrete lattice with the k-space as continuum. Using the constructed Fourier
transform, we are able to diagonalize the Hamiltonian in chapter 3.

2.1 A bipartite non-Bravais lattice

A crystal lattice is called a Bravais lattice when it is an infinite array of discrete points with an
arrangement and orientation that appears exactly the same, from whichever of the points the
array is viewed [9]. With this definition, it is easily understood that a hexagonal lattice is non-
Bravais, because only next-to-nearest neighbor points appear with the same arrangement and
orientation. Therefore, in graphene we are dealing with two triangular Bravais sub-lattices
A and B which together form the non-Bravais graphene lattice. The difference between the
sub-lattices A and B is a rotation of π. Expressing this in a more formal way, we choose the
two primitive lattice vectors in the following way:

~a1 = a

(
1
0

)
, ~a2 = a

(
1
2√
3
2

)
, (2.1)

where a denotes the distance between two lattice points, which has an experimentally deter-
mined length of about 2.46Å[7]. The origin of these primitive vectors is set in the middle
of an optional honeycomb, so that a linear combination of ~a1 and ~a2 with integer prefactors
characterizes a space point ~x, i.e. we have a set of vectors defined by

X := {~x ∈ R2|~x = n1~a1 + n2~a2, n1, n2 ∈ Z}. (2.2)

5



6 CHAPTER 2. PROPERTIES OF THE HONEYCOMB LATTICE

In order to work with these primitive vectors in further chapters, we are interested in the
positions of carbon atoms and not in the centers of hexagons. With the two unit-vectors ~eA
and ~eB, given by

~eA = a

(
1
2√
3
6

)
, ~eB = −a

(
1
2√
3
6

)
, (2.3)

we can distinguish between the two sub-lattices and also characterize the whole lattice by a
space vector, i.e. with the set of vectors of each Bravais sub-lattices

XA := X + ~eA = {~x ∈ R2|~x = n1~a1 + n2~a2 + ~eA, n1, n2 ∈ Z}, (2.4)

XB := X + ~eB = {~x ∈ R2|~x = n1~a1 + n2~a2 + ~eB, n1, n2 ∈ Z}, (2.5)

we can describe the entire non-Bravais graphene lattice

XG := XA ⊕XB. (2.6)

The property of the graphene lattice in Eq. (2.6) belongs to the class of bipartite lattices.
Therefore, graphene is a bipartite non-Bravais lattice with two carbon atoms per unit cell,
illustrated in Fig. 2.1.

x

y

~x

~eB

~eA

~a1

~a2

Figure 2.1: The primitive vectors ~a1 and ~a2, the space vector ~x connecting the centers of two hexagons,
as well as the unit-vectors ~eA and ~eB distinguishing the sub-lattice A (◦) and B (•).

For completeness we briefly discuss some symmetries of the graphene lattice. An important
symmetry is the shift symmetry on each sub-lattice. This symmetry was introduced by the
two primitive vectors ~a1 and ~a2 in Eq. (2.1) and maps A → A and B → B. Obviously, the
shift transformation A→ B is not defined according to the primitive vectors.
Another important symmetry which should be mentioned here is the rotation symmetry R.
We can see that a rotation by π

6 with the centre of rotation in the center of a hexagon maps
the sub-lattice A onto B and vice versa, i.e. A→ B and B → A.
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2.2 The reciprocal lattice

For the two sub-lattices A and B, defined in Eq. (2.4) and Eq. (2.5), the primitive vectors
in Eq. (2.1) are the same. The only difference between them is found in the two different
unit-vectors ~eA and ~eB, i.e.

~eA = −~eB. (2.7)

In momentum space, the primitive reciprocal vectors ~b1 and ~b2 are the same for both sub-
lattices A and B. With Eq. (2.1) and the Laue condition

~ai ·~bj = 2πδij , i, j ∈ 1, 2, (2.8)

we obtain the primitive vectors of the reciprocal lattice, which are given by

~b1 =
4π√
3 a

( √
3
2
−1

2

)
, ~b2 =

4π√
3 a

(
0
1

)
. (2.9)

The corresponding first Brillouin zone is illustrated together with the obtained primitive
vectors in Fig. 2.2. We see that the first Brillouin zone forms a hexagon, which is rotated by
π
12 compared to the hexagonal structure in position space.

x

y

~b1

~b2

kx

ky

M

ΓK

Figure 2.2: The corners of the first Brillouin zone are constructed by determining the mean distance
between nearest-neighbor points of the same sub-lattice. On the left, there is the first Brillouin zone,
constructed for sub-lattice A. On the right, the calculated primitive vectors ~b1 and ~b2 are illustrated
together with the first Brillouin-zone as well as the points M , Γ and K, which come up important in the
following chapter 3.

Fig. 2.2 shows only the first Brillouin zone for sub-lattice A. If we also construct it for sub-
lattice B, several corners of sub-lattice A are at the same place as corners of sub-lattice B.
This implies that the resulting Brillouin zone of the graphene lattice is a combination of both
sub-lattices. Note that we find at every lattice point at most two fermions with the opposite
spin.
A more general but important remark is related to the periodicity of the Brillouin zone. All
momenta can be shifted into the first Brillouin zone, because A and B are Bravais lattices.
This implies that only the momenta in the first Brillouin zone are important for further
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calculations.
To complete this section, let us just highlight the corners of the first Brillouin zone. They are
discussed in more detail in chapter 3 and chapter 4. In the first Brillouin zone, we count six
corners, which we arrange in two sets, i.e. they are given by

K =

{
4π√
3 a

(
1√
3

0

)
,

4π√
3 a

(
−
√
3
6

1
2

)
,

4π√
3 a

(
−
√
3
6
−1

2

)}
, (2.10)

K ′ =

{
4π√
3 a

(
− 1√

3

0

)
,

4π√
3 a

(√
3
6
−1

2

)
,

4π√
3 a

(√
3
6
1
2

)}
. (2.11)

Referring to the periodicity of the Brillouin zone, only two corners are actually important,
because the others can be obtained by some shift operations and are identified with the first
corner by periodic boundary conditions. For this reason, we choose a representative of the
set K in Eq. (2.10) and K ′ in Eq. (2.11). We redefine K and K ′ and use only the corners

K =
4π√
3 a

(
1√
3

0

)
, K ′ =

4π√
3 a

(√
3
6
1
2

)
, (2.12)

for further calculations. These two points K and K ′ are of particular importance for the
physics of graphene and are named Dirac points for reasons that will become clear later.

2.3 Fourier transform

The link between position space and momentum space is given by the Fourier transform.
The position space contains discrete points whereas the momentum space is continuous. In
order to be able to transform operators from one space to the other, we have to construct the
appropriate Fourier transform.
First, we define the Fourier transform of a complex function f~x : XG → C with discrete values
~x ∈ XG. Using the discrete position vectors ~x, we obtain the discrete Fourier transform

f̃(~k) :=
∑
~x∈XG

f~x exp(−i~k · ~x), (2.13)

for all ~k ∈ R2. According to the Laue condition in Eq. (2.8), the scalar product of space
vector ~x ∈ XG and momentum vector ~k ∈ R2 yields

exp(i~k · ~x) = 1⇐⇒ ~k · ~x = 2πn, n ∈ Z, (2.14)

and implies that the discrete Fourier transform of Eq. (2.13) does not violate the periodic
property of the momentum vector ~k. For all ~x ∈ XG and ~k′ ∈ R2, we obtain

f̃(~k + ~k′) =
∑
~x∈X

f~x exp(−i(~k + ~k′) · ~x) =
∑
~x∈X

f~x exp(−i~k · ~x) exp(−i~k′ · ~x)︸ ︷︷ ︸
=1

= f̃(~k). (2.15)

In a second step, we consider the integral of the inverse Fourier transform f̃(~k). According to
section 2.2, the continuous momentum space R2 can be decomposed into a direct sum, which
is given by

B ⊕K = {~x ∈ R2|~x = ~b+ ~k, ~b ∈ B,~k ∈ K} = R2. (2.16)
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~b1

~b2

kx

ky

~b1

~b2

kx

ky

~b1

~b2

kx

ky

Figure 2.3: The figure in the middle illustrates the relation between the rhombic (left figure) and the
hexagonal (right figure) Brillouin-zone.

A possible method to evaluate the inverse Fourier transform over a hexagon as integration
area would be an evaluation over a quadrilateral.
When we are thinking about a possibility to transform a hexagon into a tetragon in order to
integrate just over two simple 1-dimensional intervals, we obtain Fig 2.3 as a possibility to
integrate along the primitive vectors ~b1 and ~b2. With this parametrization, the problem is
simpler to solve. Given Fig. 2.3 above, we are able to use an alternative choice of the first
Brillouin zone which is given by

B = {~k = m1
~b1 +m2

~b2 ∈ R2| − 1

2
≤ m1,m2 <

1

2
}. (2.17)

The corresponding inverse Fourier transform

f~x =

∫
B
d2k f̃(~k) exp(i~k · ~x) (2.18)

to Eq. (2.13) yields, together with the boundary values of Eq. (2.17)

f~x =

∫ 1
2

− 1
2

dm1

∫ 1
2

− 1
2

dm2 f̃(m1
~b1 +m2

~b2) exp(i(m1
~b1 +m2

~b2) · ~x)

=

√
3 a2

8π2

∫
B
d2k f̃(~k) exp(i~k · ~x), (2.19)

where we have used the substitution

kx =
2π

a
m1, ky =

4π√
3a

(
−1

2
m1 +m2

)
=⇒ m1 =

a

2π
kx, m2 =

a

4π
kx +

√
3 a

4π
ky, (2.20)

and the corresponding Jacoby determinant

det

(
∂(m1,m2)

∂(kx, ky)

)
=

∣∣∣∣∣
(

a
2π 0
a
4π

√
3a
4π

)∣∣∣∣∣ =

√
3 a2

8π2
, (2.21)

which is just the inverse of the area of the first Brillouin zone, i.e.

ABZ =
8π2√
3 a2

. (2.22)
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Finally, we can identify the δ-operators

δ~x,0 =

√
3 a2

8π2

∫
B
d2k exp(i~k · ~x), (2.23)

δ(~k) =

√
3 a2

8π2

∑
~x

exp(−i~k · ~x). (2.24)

With these operators in Eq. (2.23) and Eq. (2.24) above, we are at last prepared for calcula-
tions in further chapters. In appendix A, we present a short proof that we are indeed allowed
to use the proposed parametrization.



Chapter 3

Microscopic Model for Interacting
Fermions

Every carbon atom of the graphene lattice uses three of its four electrons in covalent bounding
to three other carbon atoms, while the fourth electron is free to move through the lattice
by tunnelling effects. In order to be able to describe these free electrons, we use a simple
microscopic model, the so-called single-band Hubbard model (c.f. [10]). We interpret the
crystal lattice as a periodic potential which has a minimum at every carbon ion. The free
electrons feel an attractive force exerted by this periodic potential and tunnel from ion to ion.
In the Hubbard model, the tunnelling effect is described by the hopping of electrons from ion
to ion. Obviously, these fermions are not free in respect to the potential, i.e. we are talking
about quasi-free electrons. [8]. With the relation between Energy E and momentum ~k, the
so-called dispersion relation, we are able to identify energy bands of allowed or forbidden
quasi-free electron energy states.
In this chapter 3, we primarily construct a Hamiltonian H based on the single band Hubbard
model by introducing electron creation and annihilation operators. This Hamiltonian H
describes hopping between nearest-neighbor lattice sites and yields the dispersion relation
E(~k) which reveals the full band structure of graphene. In a second step, the quasi-free
electrons are allowed to hop between nearest-neighbor and next-to-nearest-neighbor sites as
well. As a result of this expansion, we obtain a asymmetry of the energy spectrum E(~k).

3.1 Electron Creation and Annihilation Operators

We start in this section with the introduction of new operators. The creation operator c†s,~x
creates while the annihilation operator cs,~x annihilates an electron state at the lattice site
~x with spin s. Since electrons are fermions, they have only two possible spin orientations
s = ±1

2 =↑, ↓ and they are subject to the Pauli exclusion principle. To avoid electron states

of the same spin s at the same lattice site ~x, we introduce the anti-commutators of c†s,~x and
cs,~x which are given by

{cs,~x , c†s′,~x′} = δss′δ~x~x′ , {cs,~x , cs′,~x′} = 0, {c†s,~x , c
†
s′,~x′} = 0, (3.1)

where the anti-commutator of two operators A and B is defined as

{A,B} = AB +BA. (3.2)

11



12 CHAPTER 3. MICROSCOPIC MODEL FOR INTERACTING FERMIONS

With Eq. (3.1), we see that the Pauli principle is obeyed by trying to create or annihilate two
electrons of the same spin s at the same lattice site ~x, i.e. we obtain in both cases

c†2s,~x =
1

2
{c†s,~x , c

†
s′,~x′} = 0, c2s,~x =

1

2
{cs,~x , cs′,~x′} = 0. (3.3)

Another combination of both operators is their product which yields the number operator n~x
for electrons at the site ~x which is given by

n~x =
∑
s

c†s,~x cs,~x. (3.4)

With the sum over all lattice sites ~x, we obtain the total number N of quasi-free electrons in
graphene.
Finally, we consider the electron states in general. The so-called vacuum state |0〉, i.e. the
state without any electrons, is described by

cs,~x |0〉 = 0, (3.5)

for both spin orientations s and all lattice sites ~x. All other electron states of the honeycomb
lattice are characterized by a linear combination of the states

|ψ〉 =
∏
~x

(
c†↑,~x

)n↑,~x
(
c†↓,~x

)n↓,~x
|0〉, (3.6)

where the occupation number is ns,~x ∈ {0, 1} for both spins s. Thus, each lattice site can
either be vacant or occupied by a fermion with spin up s = ↑, by one with spin down s = ↓ or
by two fermions with opposite spins.

3.2 Single Band Hubbard Model

We consider the honeycomb lattice with one electron at each lattice site and allow them
to hop between nearest-neighbor carbon ions. The whole inner structure of every carbon
atom is neglected in this process, since we concentrate only on the tunnelling effect of the
quasi-free electrons. With the electron creation and annihilation operator of section 3.1, we
characterize electron hopping as an electron of spin s which is first annihilated at a lattice
site ~x and then recreated at the nearest-lattice site ~y. To describe this quantum mechanical
motion of electrons on the graphene lattice, we use the mentioned Hubbard model. The
Hamiltonian based on this model is given by

H = −t
∑
<~x,~y>
s=↑,↓

(
c†s,~x cs,~y + c†s,~y cs,~x

)
, (3.7)

where the hopping parameter t controls the tunnelling amplitude. It is given in units of
energy and has an experimental value of about 2.8eV [7]. As we see in Eq. (3.7), the energy
operator H is a sum of all electron hopping terms between nearest-neighbors, calculated over
all possible lattices sites ~x. Note that this Hamiltonian is Hermitian, i.e. H = H†.
To interpret the general form of the Hamiltonian in Eq. (3.7) in the special case of honeycomb
lattice, we use the definitions of chapter 2. Due to the shift invariance of one single hexagon of
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the graphene lattice, we only have to consider one single hexagon for the interacting quasi-free
electrons. By beginning with an electron creation at the lattice site ~x+ ~eB +~a1 and electron
annihilation at the lattice site ~x + ~eA, we go anti-clockwise and generate six different terms
of electron hopping between nearest-neighbors. Therefore, the Hamiltonian for a graphene
lattice is given by

H = −t
∑
s, ~x

[
c†s, ~x+~eB+~a1

cs, ~x+~eA + c†s, ~x+~eA cs, ~x+~eB+~a2
+ c†s, ~x+~eB+~a2

cs, ~x+~eA−~a1+

c†s, ~x+~eA−~a1 cs, ~x+~eB + c†s, ~x+~eB cs, ~x+~eA−~a2 + c†s, ~x+~eA−~a2 cs, ~x+~eB+~a1

]
(3.8)

The aim of this section is the diagonalization of the Hamiltonian H in Eq. (3.8), in order
to extract the dispersion relation E(~k). First, we transform the Hamiltonian from position
space into momentum space, so that we can simplify it. In a second step, we diagonalize it
in section 3.2.2 and finally extract in section 3.2.3 the dispersion relation we are looking for.

3.2.1 Fourier Transform of the Hamiltonian

The Hamiltonian in Eq. (3.8) contains two different operators which act on two different
sub-lattices. To simplify our problem, we distinguish the creation as well as the annihilation
operator between the sub-lattices they are acting on. We use the Fourier transform in Eq.
(2.13) and transform the operators cs, ~x and c†s, ~x from position space into momentum space.
For sub-lattice A, we obtain

c̃s,A(~k) =
∑
~x∈XA

cs, ~x exp(−i~k · ~x) = exp(−i~k · ~eA)
∑
~x∈X

cs, ~x+~eA exp(−i~k · ~x), (3.9)

c̃s,A(~k)† =
∑
~x∈XA

c†s, ~x exp(i~k · ~x) = exp(i~k · ~eA)
∑
~x∈X

c†s, ~x+~eA exp(i~k · ~x), (3.10)

and in a similar way for the sub-lattice B, we obtain

c̃s,B(~k) = exp(−i~k · ~eB)
∑
~x∈X

cs, ~x+~eB exp(−i~k · ~x), (3.11)

c̃s,B(~k)† = exp(i~k · ~eB)
∑
~x∈X

c†s, ~x+~eB exp(i~k · ~x). (3.12)

The inverse Fourier transform, which is constructed in Eq. (2.19), finally yields four different
expression. We obtain for each sub-lattice a creation and an annihilation operator, which are
given by

cs, ~x+~eA =

√
3 a2

8π2

∫
B
d2k c̃s,A(~k) exp(i~k · (~x+ ~eA)),

c†s, ~x+~eA =

√
3 a2

8π2

∫
B
d2k c̃s,A(~k)† exp(−i~k · (~x+ ~eA)),

cs, ~x+~eB =

√
3 a2

8π2

∫
B
d2k c̃s,B(~k) exp(i~k · (~x+ ~eB)),

c†s, ~x+~eB =

√
3 a2

8π2

∫
B
d2k c̃s,B(~k)† exp(−i~k · (~x+ ~eB)). (3.13)
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With the four relations above, we can finally transform the Hamiltonian in Eq. (3.8) from
position space into momentum space. We obtain the Hamiltonian in momentum space, which
is given by

H = −t
∑
~x,s

(√
3 a2

8π2

)2 ∫
B
d2k

∫
B
d2k′

[
c̃s,B(~k)†c̃s,A(~k′) exp

(
i(~k′ · (~x+ ~eA)− ~k · (~x+ ~eB + ~a1))

)
+c̃s,A(~k)†c̃s,B(~k′) exp

(
i(~k′ · (~x+ ~eB + ~a2)− ~k · (~x+ ~eA))

)
+c̃s,B(~k)†c̃s,A(~k′) exp

(
i(~k′ · (~x+ ~eA − ~a1)− ~k · (~x+ ~eB + ~a2))

)
+c̃s,A(~k)†c̃s,B(~k′) exp

(
i(~k′ · (~x+ ~eB)− ~k (~x+ ~eA − ~a1))

)
+c̃s,B(~k)†c̃s,A(~k′) exp

(
i(~k′ · (~x+ ~eA − ~a2)− ~k · (~x+ ~eB))

)
+c̃s,A(~k)†c̃s,B(~k′) exp

(
i(~k′ · (~x+ ~eB + ~a1)− ~k · (~x+ ~eA − ~a2))

)]
. (3.14)

In Eq. (3.14) above, one of the two integrations can be performed using the δ-function which
was constructed in Eq. (2.23). By simplifying the expression, we are able to identify the
δ-function δ(~k′ − ~k), i.e. we obtain

H = −t
∑
s

(√
3 a2

8π2

)∫
B
d2k

∫
B
d2k′

(√
3 a2

8π2

)∑
~x

exp
(
i~x · (~k′ − ~k)

)
︸ ︷︷ ︸

δ(~k′−~k)[
c̃s,B(~k)†c̃s,A(~k′) exp

(
i(~k′ · ~eA − ~k · (~eB + ~a1))

)
+c̃s,A(~k)†c̃s,B(~k′) exp

(
i(~k′ · (~eB + ~a2)− ~k · ~eA)

)
+c̃s,B(~k)†c̃s,A(~k′) exp

(
i(~k′ · (~eA − ~a1)− ~k · (~eB + ~a2))

)
+c̃s,A(~k)†c̃s,B(~k′) exp

(
i(~k′ · ~eB − ~k · (~eA − ~a1))

)
+c̃s,B(~k)†c̃s,A(~k′) exp

(
i(~k′ · (~eA − ~a2)− ~k · ~eB)

)
+c̃s,A(~k)†c̃s,B(~k′) exp

(
i(~k′ · (~eB + ~a1)− ~k · (~eA − ~a2))

)]
, (3.15)

and can simplify the Hamiltonian to

H = −t
∑
s

(√
3 a2

8π2

)∫
B
d2k[

c̃s,B(~k)†c̃s,A(~k) exp
(
i~k · (~eA − ~eB − ~a1)

)
+c̃s,A(~k)†c̃s,B(~k) exp

(
i~k · (~eB + ~a2 − ~eA)

)
+c̃s,B(~k)†c̃s,A(~k) exp

(
i~k · (~eA − ~a1 − ~eB − ~a2)

)
+c̃s,A(~k)†c̃s,B(~k) exp

(
i~k · (~eB − ~eA + ~a1)

)
+c̃s,B(~k)†c̃s,A(~k) exp

(
i~k · (~eA − ~a2 − ~eB)

)
+c̃s,A(~k)†c̃s,B(~k) exp

(
i~k · (~eB + ~a1 − ~eA + ~a2)

)]
. (3.16)
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With Eq. (2.7), we obtain

H = −t
∑
s

(√
3 a2

8π2

)∫
B
d2k[

c̃s,B(~k)†c̃s,A(~k) exp
(
− i~k · ~a1

)
exp

(
− 2i~k · ~eA

)
+c̃s,A(~k)†c̃s,B(~k) exp

(
i~k · ~a2

)
exp

(
2i~k · ~eA

)
+c̃s,B(~k)†c̃s,A(~k) exp

(
− i~k · (~a1 + ~a2)

)
exp

(
− 2i~k · ~eA

)
+c̃s,A(~k)†c̃s,B(~k) exp

(
i~k · ~a1

)
exp

(
2i~k · ~eA

)
+c̃s,B(~k)†c̃s,A(~k) exp

(
− i~k · ~a2

)
exp

(
− 2i~k · ~eA

)
+c̃s,A(~k)†c̃s,B(~k) exp

(
i~k · (~a1 + ~a2)

)
exp

(
2i~k · ~eA

)]
, (3.17)

and are finally able to simplify the Hamiltonian in momentum space

H = −t
∑
s

(√
3 a2

8π2

)∫
B
d2k
(
ε(~k)∗c̃s,B(~k)†c̃s,A(~k) + ε(~k) c̃s,A(~k)†c̃s,B(~k)

)
. (3.18)

where we have introduced a phase factor ε(~k), defined by

ε(~k) := exp(2i~k ~eA)
[

exp(i~k~a1) + exp(i~k~a2) + exp(i~k (~a1 + ~a2))
]
. (3.19)

By using the Fourier transform, which was derived in chapter 2, we have finally obtained a
simple form of the Hamiltonian H in Eq. (3.18) together with the phase factor ε(~k) in Eq.
(3.19).

3.2.2 Diagonalization

The distinction of different creation as well as annihilation operators at the beginning of
the previous section 3.2.1 generates a two-component spinor in the Hamiltonian H which
represents the sub-lattices A and B. For this reason, we rewrite H in matrix representation
and obtain

H =− t
∑
s

(√
3 a2

8π2

)∫
B
d2k
(
c̃s,A(~k)†, c̃s,B(~k)†

)( 0 ε(~k)

ε∗(~k) 0

)(
c̃s,A(~k)

c̃s,B(~k)

)
. (3.20)

To extract the dispersion relation E(~k), we have to diagonalize the Hamiltonian H. The only
non-diagonal term in Eq. (3.20) is the two-dimensional quadratic matrix which contains the
phase factor ε(~k), i.e. we define

A :=

(
0 ε(~k)

ε∗(~k) 0

)
∈ U(2) = {A ∈Mat(2× 2,C)|A†A = E2}. (3.21)

The matrix A is a unitary matrix by definition. For this reason, we have to find a matrix
U ∈ U(2) generated by the eigenvectors of A, such that we can diagonalize A with it, i.e.

D = U AU †. (3.22)
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A possible unitary transformation with a matrix U is given by

U :=
1√
2

(
exp(iα2 ) exp(−iα2 )
exp(iα2 ) − exp(−iα2 )

)
∈ U(2). (3.23)

With Eq. (3.22) and Eq. (3.23), we are able to diagonalize the matrix A in Eq. (3.21) and
obtain

U

(
0 ε(~k)

ε∗(~k) 0

)
U † =

(
exp(iα2 ) exp(−iα2 )
exp(iα2 ) − exp(−iα2 )

)(
0 ε(~k)

ε∗(~k) 0

)(
exp(−iα2 ) exp(−iα2 )
exp(iα2 ) − exp(iα2 )

)

=⇒ U

(
0 ε(~k)

ε∗(~k) 0

)
U † =

(
|ε(~k)| 0

0 −|ε(~k)|

)
. (3.24)

With Eq. (3.24), the matrix A in diagonal form, the Hamiltonian H in Eq. (3.20) finally
reduces to

H =− t
∑
s

(√
3 a2

8π2

)∫
B
d2k
(
c̃s,A(~k)†, c̃s,B(~k)†

)
U †

(
|ε(~k)| 0

0 −|ε(~k)|

)
U

(
c̃s,A(~k)

c̃s,B(~k)

)
. (3.25)

In Eq. (3.25) above we have obtained an expression for H which contains only diagonal terms.
For this reason, we are able to extract the dispersion relation E(~k) in the following section
3.2.3.

3.2.3 Dispersion Relation

By considering the eigenvalue equation Hψ = E ψ and the Hamiltonian H in Eq. (3.25), we
see that the information about the energy of the electrons on the graphene lattice is encoded
in the absolute value of the phase factor ε(~k) in combination with the hopping parameter t.
Therefore, we finally obtain the dispersion relation which is given by

E±(~k) = ± t |ε(~k)|. (3.26)

In order to visualize the dispersion relation, we simplify the expression |ε(~k)| where the phase
factor ε(~k) is given in Eq. (3.19). Using the primitive vectors ~a1 and ~a2 in Eq. (2.1), we obtain

|ε(~k)|2 = ε(~k)ε(~k)∗

= [exp(i~k · ~a1) + exp(i~k · ~a2) + exp(i~k · (~a1 + ~a2))]

× [exp(−i~k · ~a1) + exp(−i~k · ~a2) + exp(−i~k · (~a1 + ~a2))]

= 3 + 2 cosh(i~k · ~a1) + 2 cosh(i~k · ~a2) + 2 cosh(i · ~k (~a1 − ~a2))

= 3 + 2 cos(~k · ~a1) + 2 cos(~k · ~a2) + 2 cos(~k · (~a1 − ~a2))
= 3 + 2 cos(2πm1) + 2 cos(2πm2) + 2 cos(2π (m1 −m2)), (3.27)

represented in the basis {~b1,~b2} (see Eq. 2.17). With the relation between the parameters
m1,m2 and kx, ky, as shown in Eq. (2.20), the absolute value squared becomes

|ε(~k)|2 = 3 + 2 cos(
a

2
kx) + 2 cos(

√
3 a

2
ky +

a

2
kx) + 2 cos(

a

2
k1 −

√
3a

2
k2)

= 3 + 2 cos(a kx) + 4 cos(
a

2
kx) cos(

√
3 a

2
ky). (3.28)
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After all, we find a dispersion relation which is given by

E±(~k) = ±t |ε(~k)| = ±t

√
3 + 2 cos(a kx) + 4 cos(

a

2
kx) cos(

√
3 a

2
ky), (3.29)

represented in the orthogonal basis {kx, ky}. This result is completely symmetric around
the center Γ of the first Brillouin zone. By referring to the plus-minus sign in Eq. (3.29),
the dispersion relation forms two identical bands of allowed energy states, namely the upper
conduction and the lower valence band which are illustrated in Fig. 3.1.

Figure 3.1: In both figures, the dispersion relation E(~k) is shown limited on the first Brillouin zone for a
value t = 2.8eV . On the left, the full energy spectrum of graphene is illustrated in 3D ([kx] = [ky] = 1

a

and
[
E(~k)

]
= eV ). On the right, E(~k) expresses the symmetry between the conduction and valence band

by introducing the points of high symmetry, namely M , Γ and K.

By considering the dispersion relation more in detail, we observe that the value of the hopping
parameter t determines the energy scale but not the shape of E(~k). In addition, the dispersion
relation determines the so-called Fermi surface which consist of six different zero points, the
six Dirac points which are mentioned in section 2.2, i.e. in Eq. (2.10) and in Eq. (2.11).
The corresponding Fermi level EF lies between the two symmetrical bands. Through this
connection of these bands in points of E = EF = 0, graphene shows a semi-metallic behavior
which can be interpreted as a zero-gap semiconductor. Note that semiconductors are strongly
dependent on temperature. We are talking about a half-filled ground state, when all states
in the lower valence band E−(~k) are occupied, while the states in the upper conduction
band E+(~k) are completely empty. This is the case in the absolute zero point T = 0 and
graphene becomes an insulator. In the following chapter 4, we will discuss the Dirac points in
more detail by expanding the dispersion relation around them in order to obtain an effective
low-energy description.

3.3 Electron Hopping to Next-to-Nearest Neighbors

To conclude this chapter 3, we extend the Hamiltonian in Eq. (3.7), i.e. we consider electron
hopping to nearest-and next-to-nearest-neighbor ions. Hence, the electrons are allowed to
hop from one sub-lattice to another or to hop onto the same again. Therefore, the extended
Hamiltonian is a sum of the Hamiltonian in Eq. (3.7) and a Hamiltonian which describes
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electron hopping between next-to-nearest-neighbor ions. We obtain

H+H′ = −t
∑
<~x,~y>
s=↑,↓

(
c†~xc~y + c†~yc~x

)
− t′

∑
<<~x,~y>>
s=↑,↓

(
c†~xc~y + c†~yc~x

)
, (3.30)

where we have introduced another hopping parameter t′ for which in general t′ 6= t. We
have already solved the Hamiltonian H in Eq. (3.25), so we only have to concentrate us on
the additional Hamiltonian H′ by diagonalizing the sum H + H′ as we see later. However,
first we have to formulate the Hamiltonian term H′ in Eq. (3.30) for electron hopping to
next-to-nearest-neighbors like in Eq. (3.7) for the Hamiltonian H and obtain

H′ = −t′
∑
~x,s

[
c†s, ~x+~eA−~a2 cs, ~x+~eA + c†s, ~x+~eA cs, ~x+~eA−~a2

+ c†s, ~x+~eA−~a1 cs, ~x+~eA−~a2 + c†s, ~x+~eA−~a2 cs, ~x+~eA−~a1

+ c†s, ~x+~eA cs, ~x+~eA−~a1 + c†s, ~x+~eA−~a1 cs, ~x+~eA

+ c†s,~x+~eB+~a1
cs ~x+~eB+~a2 + c†s, ~x+~eB+~a2

cs, ~x+~eB+~a1

+ c†s, ~x+~eB cs, ~x+~eB+~a1 + c†s, ~x+~eB+~a1
cs ~x+~eB

+ c†s, ~x+~eB+~a2
cs, ~x+~eB + c†s, ~x+~eB cs,~x+~eB+~a2

]
. (3.31)

In analogy to the Hamiltonian H in Eq. (3.18), the expression for H′ above in Eq. (3.31) can
be simplified to the compact form

H′ =− t′
∑
s

(√
3 a2

8π2

)∫
B
d2k
(
κ(~k)c̃s,B(~k)†c̃s,A(~k) + κ(~k) c̃s,A(~k)†c̃s,B(~k)

)
, (3.32)

where we have defined a new phase factor κ(~k) given by

κ(~k) = exp(i~k · ~a1)+ exp(i~k · ~a2) + exp(i~k · (~a2 − ~a1))

+ exp(−i~k · ~a1) + exp(−i~k · ~a2) + exp(−i~k · (~a2 − ~a1)). (3.33)

At this point of development, we already simplify the new phase factor κ(~k) in the basis of
{kx, ky}, i.e. we obtain

κ(~k) = 2 cos(~k · ~a1) + 2 cos(~k · ~a2) + 2 cos(~k · (~a2 − ~a1))

= 2 cos(a kx) + 4 cos(
a

2
kx) cos(

√
3 a

2
ky). (3.34)

Finally, using Eq. (3.18) and (3.32), we can rewrite the Hamiltonian in Eq. (3.30) in matrix
representation and obtain

H+H′ = −
∑
s

(√
3 a2

8π2

)∫
B
d2k
(
c̃s,A(~k)†, c̃s,B(~k)†

) (t′ κ(~k) t ε(~k)

t ε∗(~k) t′ κ(~k)

)(
c̃s,A(~k)

c̃s,B(~k)

)
. (3.35)
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With the same unitary matrix U in Eq. (3.23), we are able to diagonalize the Hamiltonian in
Eq. (3.35) above and obtain

H+H′ = −
∑
s

(√
3 a2

8π2

)∫
B
d2k

×
(
c̃s,A(~k)†, c̃s,B(~k)†

)
U

(
t′ κ(~k) + t |ε(~k)| 0

0 t′ κ(~k)− t |ε(~k)|

)
U †

(
c̃s,A(~k)

c̃s,B(~k)

)
,

(3.36)

where we can extract the dispersion relation for the extended Hamiltonian H+H′ as

E±(~k) = ±t |ε(~k)| − t′ κ(~k) = ±t
√

3 + f(~k)− t′ f(~k), (3.37)

by introducing a new phase factor f(~k) which is given by

f(~k) = 2 cos(a kx) + 4 cos(
a

2
kx) cos(

√
3 a

2
ky). (3.38)

The additional Hamiltonian H′ generates an additional term in the dispersion relation E(~k),
and the two different phase factors ε(~k) and κ(~k) merge to a new phase factor f(~k). With
t′ = 0, the dispersion relation stays symmetric as in Fig. 3.1. However, if t′ 6= 0, we obtain
an asymmetry between conduction and valence band (see Fig 3.2).

Figure 3.2: The dispersion relation of the extended Hamiltonian H + H′ is illustrated in 3D on the left
and in 2D with introduced points of high symmetry on the right (with t = 2.8eV and t′ = 0.1eV [7]). The
value of t′ is the result obtained in cyclotron resonance experiment[12].

By referring to the work of S. Reich Tight-binding description of graphene[13], the inclusion
of electron hopping to second- as well as third-nearest-neighbors yield a more precise thigh-
binding approximation. The dispersion relation in Eq. (3.29) predicts the electric energy
only for a finite range of wave vector ~k whereas the extended dispersion in Eq. (3.37) quite
accurately describes energy states E(~k) over the whole first Brillouin zone. By comparing
both dispersion relations in detail, we observe in the second dispersion relation in Eq. (3.37) a
certain electron-hole asymmetry due to the energy shift of the Dirac points, as we see in Fig.
3.2. Unfortunately, we would go beyond the scope of this thesis by considering this aspect of
asymmetry in more detail. Therefore, we mention it here for completeness.





Chapter 4

Effective Low-Energy Description

A very interesting aspect of Graphene is the low-energy description using an effective theory.
For this purpose, we consider at the connection of the upper conduction and the lower valence
band, i.e. at the vicinity of the Dirac points K and K ′. When we expand the dispersion
relation around these points, we obtain in first order approximation a linear characteristic.
For small energy the dispersion relation forms so-called Dirac cones. The existence of these
cones implies that Graphene is classified as a conventional semiconductor, because there is
no gap between conduction and valence band. The mentioned interesting aspect arises when
we consider the Fermi velocity vF . In fact, Graphene’s low-energy excitations are relativistic,
massless, quasi-free Dirac fermions which are moving through the honeycomb lattice with a
velocity vF . Between the Fermi velocity vF and the speed of light c, there is a factor 300[7].
Due to this reduced speed of light, many unusual properties of quantum electrodynamics
(QED) can be discussed in Graphene at much smaller speeds. In addition, Graphene, with
such a high Fremi velocity, shows its high quality as a conductor of electricity.
In this chapter 4, we first acquaint ourselves with the interacting fermions as Dirac fermions.
In a second step, we develop an effective theory for small energies based on the Dirac equation.
We discuss Dirac points, cones and fermions in graphene, because we use the relativistic
variant of the Schrödinger equation, the mentioned Dirac equation, for describing the low-
energy dynamics. Furthermore, the results of this chapter 4 are essential for describing in
chapter 5 some properties of graphene in an external magnetic field, because, in comparison
with ordinary electrons, Dirac fermions behave in an unusual manner.

4.1 Dirac Cones

At the beginning of section 2.2, we have highlighted the Dirac points as the six corners of the
first Brillouin zone and have chosen one Dirac point K and K ′ in Eq. (2.12). Obviously, all
further calculations concerning these Dirac cones are analytically identical.
We start by expanding the dispersion relation in Eq. (3.29) around the Dirac point K for an
infinitesimal vector ∆~k. With the first and second order derivatives of |ε(~k)|2

∂|ε(~k)|2

∂kx
= −2 a sin(a kx)− 2a sin(

a

2
kx) cos(

√
3 a

2
ky), (4.1)

∂|ε(~k)|2

∂ky
= −2

√
3 a cos(

a

2
kx) sin(

√
3 a

2
ky), (4.2)

21
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∂2|ε(~k)|2

∂k2x
= −2 a2 cos(a kx)− a2 cos(

a

2
kx) cos(

√
3 a

2
ky), (4.3)

∂2|ε(~k)|2

∂k2y
= −3 a2 cos(

a

2
kx) cos(

√
3 a

2
ky), (4.4)

∂2|ε(~k)|2

∂kx∂ky
=
√

3 a2 sin(
a

2
kx) sin(

√
3 a

2
ky), (4.5)

we evaluate the expansion to second order

|ε(~k + ∆~k)|2 = |ε(~k)|2
∣∣∣
~k=K

+
∂|ε(~k)|2

∂kx

∣∣∣
~k=K

∆kx +
∂|ε(~k)|2

∂ky

∣∣∣
~k=K

∆ky

+
1

2

[
∂2|ε(~k)|2

∂k2x

∣∣∣
~k=K

∆k2x +
∂2|ε(~k)|2

∂k2x

∣∣∣
~k=K

∆k2x + 2
∂2|ε(~k)|2

∂kx∂ky

∣∣∣
~k=K

∆kx ∆kx

]
+O(~k3),

(4.6)

around K and obtain

|ε(K + ∆~k)|2 =
3

4
a2(∆k2x + ∆k2y) =

3

4
a2|∆~k|2. (4.7)

Finally, the dispersion relation in first order approximation around K leads to

E±(K + ∆~k) = ±t |ε(K + ∆~k)| ≈ ±
√

3

2
a t |∆~k| = ±vF ~ |∆~k| = ±vF |∆~p|, (4.8)

where vF is the obtained Fermi velocity which is given by

vF =

√
3

2~
a t. (4.9)

By defining ω(~k) = vF |~k|, we obtain the usual compact form

E±(K + ∆~k) = ~ω(K + ∆~k). (4.10)

As we see in Eq. (4.8) above, for small energies the dispersion relation forms the mentioned
Dirac cones which arise in every Dirac point K and K ′, as shown in Fig. 4.1. Usually, the
dispersion relation of massive particles has a parabolic form. Therefore, these cones are the
first indicator of massless fermions in graphene. In addition, the Fermi velocity vF , which we
have extracted in Eq. (4.9), does depend on the hopping parameter t as well as on the lattice
spacing a but has no dependence on the momentum ~p. For massive particles on the Fermi
surface, the Fermi momentum is related to the Fermi energy by

pF =
√

2mEF , (4.11)

where the Fermi velocity is given by vF = dE
dp . Therefore, we are talking about massless Dirac

fermions in graphene given their behavior, i.e. we observe a linear dispersion relation around
the Fermi level EF and a Fermi velocity vF which is independent on the Fermi momentum.
When we include the results of section 3.3, the electron hopping to next-to-nearest-neighbors,
we obtain in first order approximation the calculated linear term in Eq. (4.8) together with
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additional terms of zeroth and second order. With the phase factor κ(~k) in first order ap-
proximation around the Dirac point K

κ(K + ∆~k) ≈ −3 +
3

4
a2|∆~k|2, (4.12)

we obtain the approximated dispersion relation

E(K + ∆~k) = ±t |ε(K + ∆~k)| − t′ κ(K + ∆~k) ≈ −3t′ +

√
3

2
a t|∆~k|+ 3

4
a2 t′ |∆~k|2. (4.13)

The presence of an additional tunnelling parameter like t′ breaks the electron-hole symmetry,
as we have seen in section 3.3.

Figure 4.1: Left: Density plot of the dispersion relation E(~k) with indicated corners K and K′ of the first
Brillouin zone. Right: 3D illustration of a single Dirac cone. Both figures are based on the Hamiltonian
H of electron hopping to nearest-neighbors with the dispersion relation of Eq. (3.29)

An immediate implication of this massless Dirac-like dispersion is a so-called cyclotron mass
which depends on the electric charge density [7]. Therefore, this mass is measurable and
provides evidence of the existence of massless Dirac quasi-free fermions in graphene.

4.2 Dirac Equation

In 1928, Dirac developed a relativistic form of the Schrödinger equation to describe relativistic
electrons (fermions with spin 1

2) and extended principles of quantum mechanic with elements
of the special theory of relativity. Before Dirac’s description, people believed in the Klein-
Gordon equation as the only description. The only problem with it were their possible negative
results for probability densities. Dirac was first to identify the problem with the second order
time derivative and solved the problem with a time derivative of first order. Based on the
Schrödinger equation, which consists of a time derivative of first order, Dirac developed the
Dirac equation [14]. By considering the non-relativistic limit v

c → 0, we obtain the Pauli
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equation.
Relativistic quantum field theory as well as high-energy physics are based, among others,
on the Dirac equation. In light of this, graphene shows the possibility of a non-relativistic
application of Dirac’s description (by referring to the low-non-relativistic energies).

4.2.1 Derivation and Connection to the Microscopic Model

For a possible alternative to the Klein-Gordon equation, we use the Schrödinger equation as
an ansatz, i.e.

i
∂ψ

∂ t
= HD ψ, (4.14)

where in the case of graphene the wave function ψ describes electron states around the Dirac
points K and K ′ (see section 4.2.3). Due to covariance, the Dirac-Hamiltonian in Eq. (4.14)
has to consist of a space derivative of first order, i.e. we obtain Dirac’s postulated Hamiltonian
which is given by

HD = −i c ~α · ~∇+ β mc2 = ~α · ~p c+ β mc2, (4.15)

where we still have to identify the quantities

~α =

α1

α2

α3

 , β. (4.16)

The Dirac equation then leads to

i
∂

∂ t
ψ = (~α · ~p c+ β mc2)ψ. (4.17)

The unknown parameters have to conform to the relativistic energy-momentum relation E2 =
(~p c)2 + (mc2)2, i.e. they have to conform to the relation

− ~2
∂2

∂ t2
= (~α ~p c+ β mc2)2 = ~p 2 c2 + (mc2)2, (4.18)

which yields three conditions given by

β2 = 1, ~α β + β ~α = 0, αi αj + αj αi = δij . (4.19)

Dirac proved that the simplest form of ~α and β is a 4 × 4 quadratic matrix. For their
representation, there exists a number of well-known alternatives. As a possible solution of
the conditions in Eq. (4.19) we have the Pauli-Dirac representation

αi =

(
0 σi
σi 0

)
, β =

(
1 0
0 −1

)
=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , (4.20)

or the Weyl representation

αi =

(
−σi 0

0 σi

)
, β =

(
0 1
1 0

)
. (4.21)
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In both possible representations, we have used the Pauli matrices σi which are given by

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (4.22)

Before we start developing a Dirac equation in the case of massless fermions which are hop-
ping on the graphene lattice (section 4.2.2), we have to identify the introduced operators of
this section 4.2.1 with the observables from the previous section 4.1, such that we obtain
comparable results. Taking the square of Eq. (4.8) yields

E±(K + ∆~k) =
3

4
a2 t2|∆~k|2. (4.23)

By setting m = 0, ~p = ~∆~k = ~ (~k − K) and c = vF , the Dirac equation should show the
same dispersion relation as the microscopic model, at least for small energies. The solutions
are found by applying a Fourier transform

ψ(p, ω) =

∫ ∞
−∞

dt ψ(p, t) exp(i ω t). (4.24)

The Dirac equation for ψ(p, ω) then states

(~ω − σi pi c)ψ(p, ω) = 0. (4.25)

This implies that either ψ(p, ω) = 0 or

det (~ω − σi pi c) = det

(
~ω p1 c− i p2 c

p1 c+ i p2 c ~ω

)
= (~ω)2 − ~p2 c2 = 0, (4.26)

which is indeed the same dispersion relation as in Eq. (4.10).

4.2.2 Dirac Hamiltonian

Dirac has developed his relativistic description in a four-dimensional space-time. In the case
of graphene, we can neglect the third space direction z. Therefore, we are working in further
calculations in a three-dimensional space-time, i.e. we have two space directions x and y as
well as one time t.
As wee have seen in the previous section 4.2.1, we obtain the same results in the effective
description. Referring to Eq. (3.20), we define

H~k = −t

(
0 ε(~k)

ε∗(~k) 0

)
. (4.27)

All the information about the energy is stored in the matrix H~k in Eq. (4.27) above. At low-
energies we can linearize this matrix around K and K ′, and obtain a continuum approxima-
tion.
Let us start by expanding the factor ε(~k) in Eq. (3.19) around K and K ′ which are given in
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Eq. (2.12). In first order approximation around K we obtain

ε(K + ∆~k) = exp
(
i(K + ∆~k) · (2~eA + ~a1 + ~a2)

)
×
[
1 + exp

(
− i(K + ∆~k) · ~a1

)
+ exp

(
− i(K + ∆~k) · ~a2

)]
≈ exp

(
i(K + ∆~k) · (2~eA + ~a1 + ~a2)

)
×
[
1 + exp

(
− iK · ~a1

)
(1− i~a1 ·∆~k) + exp

(
− iK · ~a2

)
(1− i~a2 ·∆~k)

]
.

(4.28)

By using the relations

K~a1 =
4π√
3 a

(
−
√
3
6

1
2

)
· a
(

1
0

)
= −2π

3
, (4.29)

K~a2 =
4π√
3 a

(
−
√
3
6

1
2

)
· a

(
1
2√
3
2

)
=

2π

3
, (4.30)

K ⊥ ~eA ⇒ K · ~eA = 0, (4.31)

we obtain

ε(K + ∆~k) ≈ exp
(
i∆~k · (2~eA + ~a1 + ~a2)

)
×
[
1 + exp(−i2π

3
) + exp(i

2π

3
)︸ ︷︷ ︸

=1+2 cos( 2π
3
)=0

+ exp(−i2π
3

) i∆~k · ~a1 + exp(i
2π

3
) i∆~k · ~a2

]

= exp
(
i∆~k · (2~eA + ~a1 + ~a2)

)
(−i∆~k) ·

[
exp(−i2π

3
)~a1 + exp(i

2π

3
)~a2
]
. (4.32)

By considering geometrical symmetries, we are able to eliminate the factor

exp
(
i∆~k · (2~eA + ~a1 + ~a2)

)
, (4.33)

in Eq. (4.32) and obtain finally

ε(K + ∆~k) ≈ − i∆~k ·
[

exp(−i2π
3

)~a1 + exp(i
2π

3
)~a2
]

= − i
[(
− 1

2
−
√

3

2
i
)
a∆kx +

(
− 1

2
+

√
3

2
i
)(a

2
∆kx +

√
3 a

2
∆ky

)]
=

√
3 a

2

[(
− 1

2
−
√

3

2
i
)
∆kx +

(√3

2
− 1

2
i
)
∆ky

]
=

√
3 a

2

[(
− 1

2
∆kx +

√
3

2
∆ky

)
+
(
−
√

3

2
i∆kx −

1

2
i∆ky

)]
=

√
3 a

2

(
1 i

)(cos(4π3 ) − sin(4π3 )
sin(4π3 ) cos(4π3 )

)(
∆kx
∆kx

)
. (4.34)

With the Laue condition in Eq. (2.8), we have extracted a rotation matrix in Eq. (4.34).
Thanks to this, we rotate and stretch the basis {kx, ky} by an angle 4π

3 and by a scalar ~ and
obtain a new basis p1, p2, i.e. we simplify the factor in Eq. (4.34) to

ε(~p) =

√
3 a

2~
(px + ipy). (4.35)
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Re-using the steps from Eq. (4.28) up to Eq. (4.35), we can rewrite the matrix H~k in Eq.

(4.27) evaluated in the point ~k = K and obtain the Dirac Hamiltonian HK for low-energy,
i.e. we get

HK = −t
(

0 ε(K)
ε∗(K) 0

)
=

√
3 a t

2~

(
0 px + ipy

px − ipy 0

)
=

√
3 a t

2~
(
σ1 σ2

)︸ ︷︷ ︸
~α

(
px
py

)
= vF ~α · ~p.

(4.36)

In a similar manner, the Dirac Hamiltonian HK′ is given by

HK′ =

√
3 a t

2~

(
0 px − ipy

px + ipy 0

)
=

√
3 a t

2~
(
σ1 −σ2

)︸ ︷︷ ︸
~α′

(
px
py

)
= vF ~α

′ · ~p. (4.37)

In summary, in the framework of an effective low-energy theory we obtain two Hamiltonians
which differ in the vector ~α, i.e. they are related by ~α∗ = ~α′. Therefore, we obtain two Dirac
Hamiltonians which are given by

HK = vF ~α · ~p, (4.38)

HK′ = vF ~α
∗ · ~p, (4.39)

where we use the vector ~α = (σ1 , σ2) consisting of Pauli matrices which are given in Eq.
(4.22). In the case of graphene, the second quantity β does not enter the calculation by
reason of the massless Dirac fermions.

4.2.3 Solution of the Dirac Equation

The wave function ψ in the Dirac equation consists of two components, i.e. for each Dirac
point K and K ′, we characterize the electron state in the upper component by a quantum
mechanical amplitude of finding the electron on sub-lattice A and in the lower component by
one of finding the electron on sub-lattice B. In order to solve the Dirac equation, we start
therefore with a time-dependent ansatz for electron states at a single Dirac point, which is
given by

ψ~k (~x, t) = exp
[
i
(
~k · ~x− E~k t

)]
u~k, (4.40)

where we have introduced the eigenvector

u~k =

(
A
B

)
, (4.41)

of the energy eigenvalue equation
HD u~k = E~k u~k. (4.42)

By inserting the ansatz of Eq. (4.40) in Eq. (4.17), evaluated in the Dirac point K, we obtain
the eigenvalue

E
(±)
K (~k) = ±vF |~k|, (4.43)

and the corresponding eigenvector

u
(±)
K = ±

(
0 e−iϕ~k

eiϕ~k 0

)
u
(±)
K ⇒ u

(±)
K (~k) =

1√
2

(
e−iϕ~k/2

±eiϕ~k/2

)
, (4.44)
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where ϕ~k is the polar angle of the wave vector ~k. By evaluating the Dirac equation in the
Dirac point K ′, we obtain self-evidently the same eigenvalue, i.e. EK = EK′ . Note that the
±-sign refers to the conduction (+) and valence (−) band, i.e. to electrons in the upper and
holes in the lower band. However, eigenvectors in K ′ differ from eigenvectors in K by the
pseudo-spin ~σ. Therefore, the energy eigenvectors in the Dirac point K ′ take the form

u
(±)
K′ (~k) =

1√
2

(
eiϕ~k/2

±e−iϕ~k/2

)
. (4.45)

As we see for both Dirac points K and K ′, the momentum of the massless Dirac fermions is
linearly related to their energy. A comparable particle with such a dispersion is the photon
which is massless and has a proportional relation between energy and momentum, E ∼ p, too.
In comparison, for massive particles we observe the dispersion relation E ∼ p2. Therefore,
we obtain in Eq. (4.43) a second evidence for massless Dirac fermions.
By referring to the energy eigenvectors, we introduce a new operator, the helicity h [8], which
is given by

h =
~σ · ~p
|~p|

. (4.46)

Obviously, the states ψK and ψK′ are also eigenstates of h, i.e. we obtain the eigenvalue
equation

hψK,K′ = ±1ψK,K′ , (4.47)

where the eigenvalue of h yield λh = ±1 for electron states ψ in Dirac point K as well as K ′.
This property implies that the helicity (or chirality) is well defined around the Dirac points
for low-energies. This distinction between electrons (positive helicity) and holes (negative
helicity) on each Dirac point becomes important in the following chapter 5.



Chapter 5

Dirac Fermions in a Magnetic Field

In the microscopic model as well as in the effective theory, in previous chapter 4 we found that
the Dirac fermions are relativistic, massless particles which move through the lattice with an
effective speed of light namely the Fermi velocity vf ≈ 1 · 106ms [7]. These Dirac fermions
in graphene are described by two-component wave functions and have a chiral property for
low energies, as we have seen in section 4.2. The symmetry between electrons and holes is an
important aspect in the consideration of graphene in an external magnetic field. By applying
a constant magnetic field ~B to the 2D honeycomb lattice, we observe a so-called Landau
quantization, i.e. the energy spectrum yields discrete energy levels. These generated Landau
levels are a crucial ingredient for the explanation of the quantum Hall effect (QHE) which
was observed in graphene by applying an additional electrical field ~E.
I this last chapter 5, we consider graphene in an external magnetic field, once in the micro-
scopic model of section 3 and once in the effective theory of section 4. In both models, we
describe graphene’s behavior but only in the effective theory we consider the occurring Lan-
dau levels. Finally, we discuss briefly the QHE in graphene in order to show the importance
of the Landau quantization.

5.1 Microscopic Model

We extend the Hamiltonian of electron hopping to nearest-neighbors in the presence of a
magnetic field by introducing parallel transporters Unm(~x). The applied magnetic field ~B is
continuous while the lattice consists of discrete points. Therefore, we define this additional
term to describe the influence of the magnetic field on the different types of electron hopping.
We define the parallel transporter as

Unm(~x) = exp

(
i
e

~

∫ ~xm

~xn

d~x′ · ~A(~x′)

)
. (5.1)

In other words, the hopping parameter t acquires an additional phase ϕij when we apply a
magnetic field to the system, i.e.

t = t(0)nm → t(B)
nm = t(0)nm exp (iϕnm) = t(0)nm exp

(
i
e

~

∫ ~xm

~xn

d~x′ · ~A(~x′)

)
= t Unm(~x). (5.2)

We consider a constant magnetic field ~B = B~ez with corresponding vector potential ~A =
(−yB, 0, 0) and apply it to the 2D honeycomb lattice in the x-y plane. To describe the

29
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electron motion in the presence of an external magnetic field, we expand the Hamiltonian in
Eq. (3.8) with six different parallel transporters Unm(~x) according to Eq. (5.1). With respect
to this, we can rewrite the Hamiltonian in Eq. (3.8) to

H = −t
∑

n1,n2,s

[
c†B,s,n1+1,n2

U12(~x) cA,s,n1+1,n2+1 + c†A,s,n1+1,n2
U23(~x) cB,s,n1+1,n2

+c†B,s,n1,n2
U34(~x) cA,s,n1+1,n2

+ c†A,s,n1,n2+1 U45(~x) cB,s,n1,n2

+c†B,s,n1,n2+1 U56(~x) cA,s,n1+1,n2+1 + c†A,s,n1+1,n2
U61(~x) cB,s,n1,n2+1

]
, (5.3)

where we simplify the problem by characterizing each lattice site per hexagon by the param-
eters n1 and n2 (see Fig 5.1).

x

y

(n1;n2 + 1)

(n1 + 1;n2)

(n1;n2)

(n1;n2 + 1) (n1 + 1;n2 + 1)

(n1 + 1;n2 + 1)

~x = n1~a1 + n2~a2 U12

U23U34

U45

U56 U61

Figure 5.1: Illustration of the six parallel transporters Unm in a single hexagon. The vector ~x points in
the middle of a hexagon whereas its parameters n1 and n2 characterize the six corners. The arrows from
one lattice site to the other indicate the manner of adding the different parallel transporters Unm in the
Hamiltonian in Eq. (5.3).

According to appendix B, the six transporters appearing in Eq. (5.3) are given by

U12(~x) = U45(~x) = 1, (5.4)

U23(~x) = U34(~x) = exp (i n2~r · ~a2 − i φ) , (5.5)

U56(~x) = U61(~x) = exp (−i n2~r · ~a2 − i φ) , (5.6)

where we have introduced

~r =

(
0 ,

eB

2 ~ c
a

)
, φ =

√
3 eB

8 ~ c
a2. (5.7)

To simplify the Hamiltonian in Eq. (5.3), we utilize the shift invariance in x-direction using
the vanishing commutation relation [H, kx] = 0 which we obtain by considering the Landau
gauge ~A = (−yB, 0, 0). Thanks to this, we define the Fourier transform of the used creation
and annihilation operators similarly to section 3.1, i.e. the Fourier transform is given by

c̃†L,s,n2
(kx) =

∑
n1

c†L,s,n1,n2
exp (−i kx an1) , (5.8)
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c̃L,s,n2
(kx) =

∑
n1

cL,s,n1,n2
exp (i kx an1) , (5.9)

where we have defined the index L ∈ {A,B}, because these definitions are valid for both
sub-lattices A and B. The corresponding inverse Fourier transform yields

c†L,s,n1,n2
=

a

2π

∫ π
a

−π
a

dkx c̃
†
L,s,n2

(kx) exp(−i kx an1), (5.10)

cL,s,n1,n2
=

a

2π

∫ π
a

−π
a

dkx c̃L,s,n2
(kx) exp(i kx an1), (5.11)

where kx ∈
[
−π
a ,

π
a

]
by referring to chapter 2. Finally, we simplify the Hamiltonian in Eq. (5.3)

by including the creation and annihilation operators of Eq. (5.10) and Eq. (5.11). In the same
manner we have simplified the Hamiltonian in section 3.2.2, we identify a Dirac-δ-function
δ(kx − k′x) and obtain a compact form of the Hamiltonian, i.e. we get

H = −t
∑
n2,s

a

2π

∫ π
a

−π
a

dk
[
c̃†B,s,n2

c̃A,s,n2+1

+c̃†A,s,n2+1 c̃B,s,n2

+c̃†B,s,n2+1 c̃A,s,n2+1 exp (−i 2φn2 − i φ)

+c̃†A,s,n2
c̃B,s,n2

exp (i 2φn2 − i φ)

+c̃†B,s,n2
c̃A,s,n2

exp (−i 2φn2 − i φ− i kx a)

+c̃†A,s,n2+1 c̃B,s,n2+1 exp (i 2φn2 − i φ+ i kx a)
]
. (5.12)

Unlike in section 3.2.3, we are not able to identify the dispersion relation in Eq. (5.12) above.
Therefore, we solve the energy eigenvalue equation Hψ = E ψ by comparison of coefficients.
We then define an electron state ψ as

|ψ〉 =
∑
n2,s

(
aA,s,n2

c̃†A,s,n2
+ aB,s,n2

c̃†B,s,n2

)
|0〉, (5.13)

where an2,L
stands for the probability amplitude of sub-lattice L ∈ {A,B}, and obtain two

iterative recurrence relations of the amplitudes aA,s,n2
and aB,s,n2

, i.e. for ε := −E
t we get

ε aA,s,n2
= aB,s,n2−1 + aB,s,n2

exp [i φ (2n1 − 1)] + aB,s,n2
exp [−i φ (2n1 − 1) + ikxa]

= aB,s,n2−1 + aB,s,n2
exp (ikxa) cos

(
φ (2n1 − 1)− kx

2
a

)
=aB,s,n2−1 + g h(n2) aB,s,n2

, (5.14)

ε aB,s,n2
= aA,s,n2+1 + aA,s,n2

exp [−i φ (2n1 − 1)] + aA,s,n2
exp [i φ (2n1 − 1) + ikxa]

= aA,s,n2+1 + aA,s,n2
exp (−ikxa) cos

(
φ (2n1 − 1)− kx

2
a

)
=aA,s,n2+1 + g∗ h(n2) aA,s,n2

, (5.15)
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where we have introduced

g = exp(ikxa), h(n2) = cos

(
φ (2n1 − 1)− kx

2
a

)
. (5.16)

The thus obtained recursive relations for aA,s,n2
and aB,s,n2

in Eq. (5.14) and (5.15) offer
various clues to a relation between both Dirac points K and K ′ and sub-lattice A and B
respectively by applying a magnetic field. A very special aspect arises when we consider the
case E = 0, i.e. the recursive relations above yield

aA,s,n2+1 = −g∗ h(n2) aA,s,n2
, (5.17)

aB,s,n2+1 = − 1

g h(n2)
aA,s,n2

, (5.18)

which indicates a breaking of the mentioned relation between K and K ′. Instead of two
recursive relations between amplitudes of both sub-lattices in Eq. (5.14) and (5.15), we obtain
two independent relations in Eq. (5.17) and (5.18). In other words, we observe at the zero-
energy level, the zeroth Landau level, a doubly-degenerate energy state which is very unusual
in the case of conventional semiconductors. In order to be able to analyze the mentioned
Landau levels in more detail, we consider the whole problem in an effective description in the
following section 5.2. We do not consider Landau levels in the microscopic model, because we
have obtained recursive relations as the only description of the dispersion in graphene with
applied magnetic field.

5.2 Effective Description

In the case of applying a magnetic field to graphene in the effective description of chapter
4, we start directly from the Dirac Hamiltonians in Eq. (4.38) and (4.39) and solve their
eigenvalue equations. Like in the previous section 5.1, we consider the same constant magnetic
field ~B = B~ez with corresponding vector potential ~A = (−yB, 0, 0) and apply it to the 2D
honeycomb lattice in the x-y plane. As we have seen in section 4.2.3, for low energies the
electron energy eigenstate ψ is a superposition of two two-component states ψK and ψK′ .
Therefore, in the case of graphene we consider four-component wave functions

ψ =

(
ψK
ψK′

)
=


φAK
φBK
φAK′

φBK′

 , (5.19)

on which we act with the 4× 4 dimensional Hamiltonian

H = vF

(
HK 0
0 HK′

)
= vF


0 px + ipy 0 0

px − ipy 0 0 0
0 0 0 px − ipy
0 0 px + ipy 0

 . (5.20)
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5.2.1 Extended Dirac Hamiltonian and Solution

We start by characterizing the application of an external magnetic field ~B to graphene and
introduce the ~B-field through a minimal coupling which is given by

~p→ ~p+
e ~A

c
= −i~~∇− eB

c
y ~ex, (5.21)

where e denotes the positive electron charge. We apply this extended momentum of Eq. (5.21)
in Eq. (5.20) and obtain

H =


0 ~

i ∂x + ~∂y − eB
c y 0 0

~
i ∂x − ~∂y − eB

c y 0 0 0

0 0 0 ~
i ∂x − ~∂y − eB

c y

0 0 ~
i ∂x + ~∂y − eB

c y 0

 .

(5.22)
Due to the decoupling of Dirac Hamiltonian HK and HK′ , we first look for solutions of the
eigenvalue equation HK ψ = E ψ. Using this, we start with the ansatz

ψKk (x, y) = exp (i k x)

(
c1 φ

A
1 (y)

c2 φ
B
2 (y)

)
, (5.23)

which is labeled by two indices, namely the Dirac point K and the wave vector component k
along the x-axis. The parameters c1 and c2 stand for the probability amplitude φA1 and φB2 .
By inserting this ansatz in the eigenvalue equation of HK , we obtain

vF

(
0 ~

i ik + ~∂y − eB
c y

~
i ik − ~∂y − eB

c y 0

)(
c1φ

A
1

c2φ
B
2

)
= E

(
c1φ

A
1

c2φ
B
2

)
. (5.24)

Like the conventional Landau quantization in a 2D electron gas (see section 5.2.2), we intro-

duce the so-called magnetic length lB =
√

c ~
eB [17] in order to simplify the expression in Eq.

(5.24), i.e. we obtain

vF~
lB

(
0 lBk + lB∂y − y

lB
lBk − lB∂y − y

lB
0

)(
c1φ

A
1

c2φ
B
2

)
= E

(
c1φ

A
1

c2φ
B
2

)
. (5.25)

In a second step, we rewrite the eigenvalue equation above in components and get two com-
bined relations which are given by

vF~
lB

(ỹ + ∂ỹ) c2φ
B
2 = Ec1φ

A
1 , (5.26)

vF~
lB

(ỹ − ∂ỹ) c1φA1 = Ec2φ
B
2 , (5.27)

where we have used the substitutions ỹ = lBk − y
lb

and ∂ỹ = lB∂y for further simplifications.
Finally, we insert Eq. (5.27) in (5.26) and get(

vF~
lB

)2

(ỹ + ∂ỹ) (ỹ − ∂ỹ) c1φA1 = E2c1φ
A
1 , (5.28)
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An interesting aspect of this Eq. (5.28) is its form analogous to an eigenvalue equation of a
one-dimensional harmonic oscillator in quantum mechanics. By referring to appendix C, we
define an annihilation operator a and a creation operator a† by

a =
1√
2

(ỹ + ∂ỹ) , (5.29)

a† =
1√
2

(ỹ − ∂ỹ) , (5.30)

and insert them in Eq. (5.28). After all, for the Dirac point K we obtain an eigenvalue
equation which can be solved by defining the wave functions φn(ỹ) as solutions of a harmonic
oscillator with energy levels n, i.e. with φA1 → φAn−1 we get(√

2
vF~
lB

)2

aa†cn−1φ
A
n−1 = E2cn−1φ

A
n−1, (5.31)

and obtain (√
2
vF~
lB

)2

aa†cn−1φ
A
n−1 =

(√
2
vF~
lB

)2√
n
√
n︸ ︷︷ ︸

=:E2
K

cn−1φ
A
n−1, (5.32)

where we have used the harmonic oscillator relations in Eq. (C.5). By considering the eigen-
value equation of HK once more with the eigenvalue EK obtained above, we get the corre-
sponding eigenvectors as (

c1φ
A
1 (y)

c2φ
B
2 (y)

)
=

(
φAn−1(ỹ)
±φBn (ỹ)

)
, (5.33)

and solve the problem. In the case of Dirac point K ′, we simply repeat the steps above with
φB2 → φBn and develop the solution in a very similar way.
By summarizing the whole extension of the Dirac Hamiltonian in Eq. (5.20) for an applied
external magnetic field ~B, we obtain a doubly-degenerate energy eigenvalue equal for both
Dirac points K and K ′ which is given by

En = EKn = EK
′

n = ±vF

√
2~eB
c

n = ±~ωD
√
n, n ∈ N0, (5.34)

where we have introduced ωD = vF

√
2~eB
~c which we interpret as the cyclotron frequency for

Dirac fermions (see previous section 5.2.2). The corresponding eigenvectors are given by

ψKn,k = Cn exp (ikxx)


φAn−1(ỹ)
±φBn (ỹ)

0
0

 , (5.35)

for Dirac point K and by

ψK
′

n,k = Cn exp (ikxx)


0
0

φAn (ỹ)
±φBn−1(ỹ)

 , (5.36)
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for Dirac point K ′. These eigenvectors are labeled with a third index n which indicates
the current Landau level of the electron state. By referring to the double-degeneracy of the
eigenvalue, we normalize the eigenvectors ψKn,k and ψK

′
n,k with an additional constant parameter

Cn which is given by

Cn =

{
1 n = 0
1√
2

n 6= 0
. (5.37)

The wave functions φLn for L ∈ {A,B} in Eq. (5.35) and (5.36) are eigenvectors of a one-
dimensional harmonic oscillator, oscillating around lB k. By referring to Eq. (C.7), we obtain

φLn(x) ∝ exp

(
− ỹ

2

)
Hn (ỹ) = exp

(
−1

2

(l2Bk − y)2

l2B

)
Hn

(
(l2Bk − y)

lB

)
, (5.38)

where the Hermite polynomials are given in Eq. (C.8).
We finish this section by considering the zero-energy level E0 in more detail. In Eq. (5.34)
for all n > 0 we observe two equal energy values with opposite sign, i.e. we obtain the energy
for electrons (positive sign) and for holes (negative sign) in both Dirac points K and K ′

respectively. In the case of n = 0, the energy is equal to zero for electrons as well as for holes
and we obtain the zero points of the dispersion relation. By considering the eigenvectors for
n = 0, we obtain

ψK0,k = Cn exp (ikxx)


0

φB0 (ỹ)
0
0

 , ψK
′

0,k = Cn exp (ikxx)


0
0

φA0 (ỹ)
0

 . (5.39)

Given the helicity at the end of section 4.2.3, the ground state is filled by electrons and holes
in equal parts, i.e. we obtain at E0 = 0 two linearly independent electron states as we see
in Eq. (5.39). In the following section 5.2.2, we use this interesting aspect of graphene as an
essential observation in the consideration of the quantum Hall effect (QHE).

5.2.2 Landau Levels and Anomalous Quantum Hall Effect

By applying an external magnetic field perpendicular to the graphene sheet, the energy spec-
trum becomes discrete, as we have seen in the previous section 5.2.1. In comparison with
Landau quantization in a 2D electron gas or 2D semiconductor, graphene represents a special
case. Therefore, we first briefly discuss the conventional Landau quantization, such that we
are able to compare it with the quantization in graphene. Corresponding to these Landau
levels, we consider in a second step the three types of Hall effect which we use to finally
understand a certain anomaly of the QHE in graphene.
In the case of conventional Landau quantization, the interacting electrons are massive and
non-relativistic, we call them Schrödinger fermions. With respect to this, we consider a semi-
conductor which has nearly a similar dispersion relation to graphene, i.e. it consists of two
energy bands touching each other at zero energy. The Landau quantization then leads to dis-
crete and equally spaced energy levels where the first Landau level is observable at a non-zero
energy, i.e. the energy eigenvalue takes the form

En = ±~ωc(n+
1

2
), n ∈ N, (5.40)
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where ωc = eB
mc is the so-called cyclotron frequency [18] and the introduced ±-sign refers to the

two mentioned energy bands. We call ωc a cyclotron frequency, because the electrons describe
a spiral path along the z-axis while moving through the external magnetic field ~B = B~ez.
By considering Dirac fermions again, the energy levels in Eq. (5.34) differ from the energy
levels in Eq. (5.40). In fact, Landau levels for Dirac electrons are different from Landau levels
for Schrödinger electrons (Fig. 5.2). This enormous difference in the dispersion relation has
consequences with respect to the QHE which we discuss next.

Figure 5.2: Landau levels n ∈ [0, 10] are illustrated for graphene on the left and for a conventional two
band semiconductor on the right. Left: E0 = 0 and En ∝

√
n ⇒ ∆E 6= const. Right: E0 6= 0 and

En ∝ n⇒ ∆E = const.

In the case of Hall effects, we differentiate between the classical Hall effect and the quantum
Hall effect (QHE). Furthermore, we differentiate with regard to the QHE between the integer
quantum Hall effect (IQHE) and the fractional quantum Hall effect (FQHE). Obviously, the
classical Hall effect was discovered first in 1879 by E. Hall. He discovered a voltage difference,
the so-called Hall voltage, across an electrical conductor which was traversed by an electric
current in a magnetic field perpendicular to it. The explanation of this effect is quite simple:
Given the Lorentz force ~F , generated by the electric current with density ~j and the magnetic
field ~B = B~ez, the flowing electrons get pushed to one edge of the sample and generate a
resulting electric field ~E.
To understand the link between the classical and the quantum Hall effect and the remarkable
property of graphene in regard to the QHE, we introduce a few definitions (c.f. [18]). We
start with the resistivity tensor ρ which is given by

ρ =
B

ne c

(
0 1
−1 0

)
, (5.41)

as well as the conductivity tensor σ which takes the form

σ =
n e c

B

(
0 −1
1 0

)
, (5.42)

where n is the electron density and e the elementary charge. Obviously, the conductivity
tensor σ is just the inverse of the resistivity tensor ρ. Therefore, they are both connected to
the resulting electric field ~E, i.e. we get

~E = ρ~j, ~j = σ ~E. (5.43)
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Finally, we define the x-y component of the resistivity tensor ρ in Eq. (5.41) as the Hall
resistivity which is given by

RH := ρxy =
B

ne c
=
UH
I
, (5.44)

and the y-x component of the conductivity tensor σ in Eq. (5.42) as the Hall conductivity,
i.e. we obtain

σyx =
n e c

B
. (5.45)

In the case of the classical Hall effect, in Eq. (5.44) we obtain a linear relation between the
magnetic field ~B and the electron density n. Therefore, we are able to determine, for example,
with this effect electron densities by known magnetic field or vice versa.
By switching from the classical Hall effect to the QHE, the basic experimental set-up remains
nearly the same. The effect is exclusively observable in two-dimensional metals such as
bounding surfaces on which we are able to describe the electrons as a 2D electron gas and
this only at sufficiently low temperature. When we drastically reduce the temperature of a
sample, the Hall resistivity becomes independent of the magnetic field and forms a quantized
Hall plateau. Therefore, the relation in Eq. (5.44) becomes incorrect and we obtain in the
case of the QHE a Hall resistivity which is given by

ρxy =
h

ν e2
, (5.46)

where ν is an integer and h is Planck’s quantum [18]. Similarly, we rewrite the Hall conduc-
tivity which takes the form

σyx =
e2

h
ν. (5.47)

K. von Klitzing was first to discover the IQHE explained above in 1980. Only two years later
in 1982, D. Tsui, H. Störmer and A. Gossard discovered the FQHE. In both types, the Hall
conductivity is given by Eq. (5.47), but the Hall plateaux appear at different values of ν, i.e.
in the case of the IQHE the parameter ν is an integer number while in the case of the FQHE
the parameter ν is a fractional number (e.g. ν = 1

3 or ν = 2
5).

By using the explanations of the QHE above in the case of graphene, we obtain finally an
anomalous quantum Hall Effect (AQHE), i.e. a fourth type which differs from the others. By
referring to section 5.2.1, the first Landau level is observable at zero energy. For this reason,
the first Hall plateau then appears already when the lowest Landau level is half-filled, i.e. the
Hall conductivity takes the form

σyx = ±4
e2

h
(i+

1

2
), i ∈ N, (5.48)

by referring to [7]. The factor 4 in Eq. (5.48) is introduced through the degeneracy which we
have discussed at the beginning of section 5.2 and the ±-sign refers to the electrons in the
conduction band (+) and to the holes in the valence band (−).
The very interesting aspect about this AQHE is not only the different Hall plateaux in com-
parison with IQHE and FQHE but also the temperature at which we observe the QHE in
graphene. Due to the large cyclotron gap ~ωD in Eq. (5.34) between the zeroth and the first
Landau level (Fig. 5.2), the QHE in graphene is even observable at room temperature [19]
and makes graphene an essential tool for verifying basic knowledge in quantum mechanics.
In addition, this AQHE is the most direct evidence for Dirac fermions.
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Obviously, there is an enormous number of interesting topics which are concerning the AQHE
in graphene. Unfortunately, we would extend this Bachelor thesis too much by considering
the whole theory in detail. Therefore, this last section is presented as a introduction to an
important application of the Landau quantization, i.e. it should motivate further research in
this area.



Chapter 6

Conclusion

At the beginning of my thesis in chapter 2, we became acquainted with graphene as a stable
2D non-Bravais lattice which consists of two Bravais sub-lattices A and B. We described
graphene’s hexagonal structure with basic tools of solid-state physics and prepared the Fourier
transform for computations in further chapters. In chapter 3, we started developing the
first Hamiltonian based on the single-band Hubbard model (electron hopping to nearest-
neighbors). After diagonalizing it, we extracted the dispersion relation and obtained two
symmetric energy bands namely the upper conduction and lower valence band. In a second
step, the interacting electrons were allowed to hop to nearest- and next-to-nearest-neighbor
ions as well and we extended the energy operator. It turned out that the allowing of hopping
to next-to-nearest-neighbors yields a certain electron-hole asymmetry. By going forward,
we repeated in chapter 4 the description of electron motion but this time in an effective
theory at low energy. By approximating the energy around the Dirac points K and K ′,
we obtained a linear characteristic, the defined Dirac cones. Such a behavior is comparable
with massless photons which have a linear dispersion relation, too. Therefore, we obtained
first evidence of massless fermions in graphene. In a second step, we developed an effective
Hamiltonian based on the Dirac equation which we solved for low energies. We obtained
finally as a result of the whole chapter 4, that the interacting electrons in graphene are in
fact describable as relativistic, massless Dirac fermions. Finally in chapter 5, we extended
the microscopical model as well as the effective description in the case of a magnetic field.
The consequence of an applied magnetic field perpendicular to graphene is the quantization
of the energy spectrum into discrete Landau levels. We observed an enormous difference
between the Landau quantization in conventional semiconductors and graphene which yields
an observable anomalous quantum Hall effect (AQHE) when we apply an additional electric
field along the lattice. Even at room temperature, we witnessed a quantum Hall effect which
forms Hall plateaux at half-integer values. The existence of the AQHE is the most direct
evidence of Dirac fermions in graphene.
In many respects, graphene is a remarkable, unique system. It differs in many ways from
conventional metals as well as semiconductors and brings a lot of important fundamental
physics aspects with it. Therefore, I attempted in my thesis to emphasize in particular the
peculiarities of graphene by using basic knowledge on the level of undergraduate students.
To finish my work, I give in the following section 6.1 a brief outlook and explain one possible
application of graphene in detail.
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6.1 Outlook

The research concerning graphene is in full activity, because this new material is promising a
lot of application possibility. For example, graphene could exchange mono-crystalline silicon
layer in solar cells or be a building material for ballistic transistors by referring to their high
electronic quality. With respect to its additional high optical transparency, graphene is a
candidate in developing touch-screens.
A very interesting application of graphene are electronic devices at nano-scale. A team of
researchers from Berkeley works on a possibility to control electron motions in graphene such
that they can produce for example a digital signal, i.e. an electron current which they could
turn on or off. As we saw already in chapter 3, graphene is a zero-gap semiconductor, i.e. one
has to produce an artificial band gap for graphene to behave like a conventional semiconductor.
Wang et al. [20] found a method to control this current by considering a bilayer of graphene
(Fig. 6.1). In an external electric field two stacked layer of graphene produce in fact a band
gap which breaks the electron current in graphene until it gets switched off again. With this
method, we are able to optimize devices of semiconductors or build up new kinds of transistors
at nano-scale.

Figure 6.1: Schematic demonstration of bilayer graphene (left) in an external electric field (right). The
electric field (arrows) separate the conduction band (blue) from the valence band (yellow) which are
connected at the Fermi level (dotted line) and generates a band gap (∆) [20].

To cut a long story short, graphene could revolutionize as a new material a number of different
fields. Therefore, it is justified to say: A promising future is only a pencil away.



Appendix A

Kronecker-Delta and
Delta-Function

To derive the Kronecker-δ of Eq. (2.23), we start with the inverse Fourier Transform

f~x =

∫ 1
2

− 1
2

dm1

∫ 1
2

− 1
2

dm2 f̃(~k) exp(i~k · ~x) =

√
3 a2

8π2

∫
B
d2k f̃(~k) exp(i~k · ~x) (A.1)

The Fourier Transform of a Kronecker-δ is equal to 1, so we get for all ~x 6= ~0∫ 1
2

− 1
2

dm1

∫ 1
2

− 1
2

dm2 exp(i~k · ~x) =

∫ 1
2

− 1
2

dm1

∫ 1
2

− 1
2

dm2 exp
[
2πi(m1n1 +m2n2)

]
= − 1

4πn1n2

[
exp(πin1)− exp(−πin1) + exp(πin2)− exp(−πin2)

]
= 0 ∀n1,2 ∈ Z (A.2)

For ~x = ~0 we get ∫ 1
2

− 1
2

dm1

∫ 1
2

− 1
2

dm2 exp(i~k ·~0) =

∫ 1
2

− 1
2

dm1

∫ 1
2

− 1
2

dm2 = 1 (A.3)

Using Eq. (A.2) and Eq. (A.3) we can write a Kronecker-Delta, which is given by

δ~x,0 =

√
3 a2

8π2

∫
B
d2k exp(i~k · ~x), (A.4)

where the inverse function takes form to

δ(~k) =

√
3 a2

8π2

∑
~x

exp(−i~k · ~x) (A.5)
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Appendix B

Parallel Transporter

According to the definition in Eq. (5.1), the six transporters appearing in Eq. (5.3) are given
by

U12(~x) = exp

(
i
e

~

∫ ~x+~eB+~a1

~x+~eA

d~x′ · ~A(~x′)

)
= 1, (B.1)

U23(~x) = exp

(
i
e

~

∫ ~x+~eA−~a2

~x+~eB+~a1

d~x′ · ~A(~x′)

)
= exp

[
i
eB

~

(
−
√

3

8
a2 +

x2
2
a

)]
, (B.2)

U34(~x) = exp

(
i
e

~

∫ ~x+~eB

~x+~eA−~a2
d~x′ · ~A(~x′)

)
= exp

[
i
eB

~

(
−
√

3

8
a2 +

x2
2
a

)]
, (B.3)

U45(~x) = exp

(
i
e

~

∫ ~x+~eA−~a1

~x+~eB

d~x′ · ~A(~x′)

)
= 1, (B.4)

U56(~x) = exp

(
i
e

~

∫ ~x+~eB+~a2

~x+~eA−~a1
d~x′ · ~A(~x′)

)
= exp

[
i
eB

~

(
−
√

3

8
a2 − x2

2
a

)]
, (B.5)

U61(~x) = exp

(
i
e

~

∫ ~x+~eA

~x+~eB+~a2

d~x′ · ~A(~x′)

)
= exp

[
i
eB

~

(
−
√

3

8
a2 − x2

2
a

)]
. (B.6)

To simplify the obtained Unm, we define two new constant parameters. With Eq. (5.7), the
parallel transporters finally take the form

U12(~x) = U45(~x) = 1, (B.7)

U23(~x) = U34(~x) = exp (i ~r · ~x− i φ) = exp (i n2~r · ~a2 − i φ) , (B.8)

U56(~x) = U61(~x) = exp (−i ~r · ~x− i φ) = exp (−i n2~r · ~a2 − i φ) , (B.9)

where we have used ~x = n1~a1 + n2~a2.
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Appendix C

Quantum Harmonic Oscillator

In Eq. (5.28) we observe a certain analogy to the eigenvalue equation of a harmonic oscillator
in quantum mechanics. To verify this assumption, we resume quickly some basic knowledge by
starting with the energy eigenvalue equation of a one-dimensional harmonic oscillator which
is given by

Hφ(z) =

[
− ~2

2m
∂2z +

1

2
mω2z2

]
φ(z) = Eφ(z). (C.1)

By defining annihilation and creation operators as

a =

√
mω

2~

(
z +

~
mω

∂z

)
, a† =

√
mω

2~

(
z − ~

mω
∂z

)
, (C.2)

Eq. (C.1) leads to

Hφ(z) = ~ω
(
N +

1

2

)
φ(z), (C.3)

where the number operator is defined as N = a†a. This operator has the eigenvalues n =
0, 1, 2, 3, ... and the eigenvectors

φ0 =

(
~

πmω

)1/4

, φn =
1√
n!

(
a†
)n
φ0. (C.4)

By considering a single annihilation or creation operator, respectively, which act on a wave
function, we obtain the following rules:

aφn =
√
nφn−1, a†φn =

√
n+ 1φn+1, aφ0 = 0. (C.5)

Finally, the eigenvalue in Eq. (C.3) reads

En = ~ω
(
n+

1

2

)
, (C.6)

and the corresponding eigenvectors in Eq. (C.4) lead to

φn(x) =

√
1

2n n!

(mω

π~

)1/4
exp

(
−mωx

2

2~

)
Hn

(√
mω

~
x

)
, (C.7)

where the functions Hn, the so called Hermite polynomials, are given by

Hn(x) = (−1)n exp
(
x2
) dn

dxn
(
exp

(
−x2

))
. (C.8)
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