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Abstract
Quantum mechanics is a very important theory, since it has many applications
such as in electronic structure. The simplest way to describe particles is by a non-
relativistic quantum mechanical wave equation, in the context of the Schrödinger
equation. However, particles may travel close to light speed and therefore relativistic
effects cannot be neglected. A combination of Special Relativity postulated by
Albert Einstein with Quantum Mechanics led to Relativistic Quantum Mechanics
and Quantum Field Theory. The Dirac equation, a four-component spinor equation
describes these phenomena. Since the spin is involved and it couples with
an external magnetic field, the investigation of this effect is very interesting.
Specifically, it leads to the degeneracy of energy levels, so-called Landau levels.
The aim of this thesis is to find the degree of the degeneracy and how it relates to
possible symmetries.
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1 Introduction
The Dirac equation is a relativistic wave equation explored by Paul Dirac in
1928 [1] . It describes spin 1

2
particles such as electrons and quarks. It led to

the prediction of anti-particles, specifically anti-electrons or positrons and which
were indeed discovered in 1932 by Carl David Anderson. The Dirac equation is the
first theory that made quantum mechanics and special relativity compatible.
It is one of the foundations of quantum electrodynamics and the Standard
Model [2] . It also has its use in fields of condensed matter physics, specifically
in so-called topological insulators. These are materials, whose bulk is insulating
and their surface is metallic. They do have a strong spin-orbit coupling, which is a
consequence of the Dirac equation [3] .
Famously, the Dirac equation serves its purpose also in the so-called quantum Hall
effect in graphene, which will be discussed in the next section. It will be followed
by approaching wave mechanics classically and quantum mechanically, where in
Subsection 2.4 a set of lowering and raising operators are introduced and the
degeneracies of energy levels are discussed in Subsection 2.5. In Section 3, spin-
momentum coupling leads to the Pauli equation. Moving to the main part of this
thesis involving the Dirac equation, these phenomena are investigated relativistically
in Section 4. In Subsection 4.2, the main objective of this thesis is tackled. This
part includes the motion of a relativistic particle in a constant magnetic field and
therefore the existence of Landau levels. A symmetry operator, which switches
between degenerate states, will be investigated in a relativistic hydrogen atom in
Subsection 4.4. The foundings will be applied to the case of a charged particle in
a constant magnetic field. Finally, the thesis is completed by discussing the results
of Johnson and Lippmann in Subsection 4.6.

1.1 Quantum Hall Effect

Before we go deeper into the quantum Hall effect, we need to clarify what the
classical Hall effect is. Originally discovered by Edwin Hall [4] , it describes the
phenomena in which a voltage perpendicular to a current can be measured, provided
a magnetic field at a right angle to the current itself is applied. In detail, if a
magnet is placed near the current then the magnetic field gets distorted. This leads
to negatively charged electrons being deflected to one side and positively charged
holes to the other side. This generates an electric field and therefore the Hall voltage
between the edges of the sample.
The quantum Hall effect as such, as the name already implies, is a quantized version
of the Hall effect. This is well known in a two-dimensional electron system existing
at low temperature in a strong magnetic field. It is also called the integer quantum
Hall effect due to the fact that the Hall resistance is determined by the universal
constant h

e2
and an integer number [5] . Its counterpart, the so-called fractional

quantum Hall effect, is caused by the Coulomb interaction between electrons [6] .
It is remarkable that the integer quantum Hall effect was observed in graphene and
at low energy it can be described by the relativistic Dirac equation [7]
.
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Graphene is built as a two-dimensional honeycomb lattice consisting of carbon
atoms. Its properties are understood within a tight-binding model, which allows
electrons to hop between nearest-neighbor sites.
The focus of this thesis is on theoretical aspects of degeneracies of energies related
to spin and relativistic effects.

2 Schrödinger Equation
Before we analyse the main problem, which involves the Dirac equation, we need
to understand one fundamental aspect in quantum mechanics. What happens if
we leave out relativistic effects and spin and only focus on a classical particle in a
constant magnetic field? For that it is important to note that we are in an infinite
volume. We treat the problem at first classically, then move to semi-classics, and
finally end up inspecting the quantum mechanical version. As from here, to simplify
calculations, we set ℏ = c = 1.

2.1 Classical Analysis

For this simple case we disregard spin and relativistic effects such that the problem
is reduced to an electron of mass M and electric charge −e moving in a constant
magnetic field B⃗ = Be⃗z. For that we choose the following vector potential

Ax(x⃗) = 0, Ay(x⃗) = Bx, Az(x⃗) = 0. (1)

Since the particle moves in a magnetic field, it experiences a Lorentz force. This
constrains the electron on a circular orbit with constant radius r. The Lorentz force
is described by the following equation

F⃗ (t) = −ev⃗(t)×Be⃗z. (2)

When an object is moving on a circular orbit it has an angular velocity ω.
Combining v = ωr and a = ω2r with Newton’s equation leads to

mω2r = eωrB ⇒ ω =
eB
M
. (3)

An important insight is the fact that the angular velocity is independent of the
radius r. Moreover the orbits are closed which is related to the conservation of the
Runge-Lenz vector creating a hidden accidental symmetry.

We start by inspecting the Lagrange function of the system to find an accidental
symmetry

L =
M

2
v⃗2 − eA⃗(x⃗) · v⃗ =

M

2
(ẋ2 − ẏ2)− eBxẏ. (4)

Given the Lagrange function, the associated conjugate momenta are given by

px =
∂L

∂ẋ
= Mẋ, py =

∂L

∂ẏ
= Mẏ − eBx. (5)
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In fact, it is easily visible that the Lagrange function is independent of y and
therefore the latter is a cyclic coordinate. This means that py itself is conserved due
to translation invariance in the y-direction. Interestingly, a translation invariance
in the x-direction also exists, even though x is not a cyclic coordinate. For that
reason px is not conserved. We can find a conserved quantity by using the Noether
theorem and obtain

Px = px + eBy. (6)

From the Lagrange function we obtain the classical Hamilton function

H = p⃗ · v⃗ − L =
1

2M
[p2x + (py + eBx)2]. (7)

In contrast to quantum mechanics, in classical physics we consider the Poisson
bracket instead of the commutator. One can verify that the Hamilton function
obeys the following Poisson brackets {H,Px} = {H,Py} = {H,Lz} = 0. This
means automatically that the 3 generators

Px = px + eBy, Py = py, Lz = x(py +
eB

2
x)− y(px +

eB

2
y), (8)

are conserved. Furthermore the commutators between the generators are as follows

{L, Px} = Py, {L, Py} = −Px, {Px, Py} = eB. (9)

From above, we can conclude that Px and Py do not commute in a system with a
magnetic field. Next, we need to analyse the Runge-Lenz vector (RLV). The RLV
is familiar from the Kepler problem in which two bodies interact by a central force
that varies as the inverse square of the distance between them. Then the RLV is
conserved [8] .

Similarly, in our problem we have a charged particle in a constant magnetic field
moving on a closed circle with a fixed center. The fixed center plays the role of a
RLV and is given by

Rx = x− ẏ

v
r = x− 1

Mω
(py + eBx) = − Py

eB
,

Ry = y +
ẋ

v
r = y +

px
Mω

=
Px

eB
.

(10)

We see that there is a proportionality relation between the pairs (Rx,Ry) and
(-Py,Px). This automatically results in (Rx,Ry) and (Px,Py) being orthogonal.
Consequently the center of the cyclotron orbit is orthogonal to the spatial
momentum. From that some interesting relationships can be deduced

{Rx, Px} = − 1

eB
{Py, Px} = 1, {Ry, Py} =

1

eB
{Px, Py} = 1, (11)

6



UNIVERSITY OF BERN Ratheban Sellaiah

and

{Rx, Py} = − 1

eB
{Py, Py} = 0, {Ry, Px} =

1

eB
{Px, Px} = 0. (12)

Especially, one gets the following relationship

{Rx, Ry} =
1

eB
. (13)

Similar to the translations, the spatial coordinates of the RLV do not have
vanishing Poisson brackets. This means that, for the quantum case, a simultaneous
arbitrarily precise measurement of the x- and y-components of the center of a
cyclotron orbit is not possible.

Now let us inspect the radius r of the cyclotron orbit

r2 = (x−Rx)
2 + (y −Ry)

2 =
1

M2ω2
(py + eBx)2 +

p2x
M2ω2

=
2H

Mω2
. (14)

One immediately sees the proportional relationship between r2 and the energy and
the former is therefore conserved [9] . This fact is going to be very important later
on when we discuss the Dirac equation in the particular case involving a constant
magnetic field.

2.2 Semi-classical Analysis

Next we treat the problem semi-classically using the Bohr-Sommerfeld quantization.
This, in particular, leads to L = n and from there we arrive at the following
conclusion

Lz =
eB

2
r2 = n⇒ r =

√
2n

eB
. (15)

Indeed the radii are now quantized. When we further analyse the resulting energy
we get

E = H =
1

2
Mω2r2 = nω. (16)

This looks very similar to the problem of a harmonic oscillator, except that an
additive constant of ω

2
is missing.

2.3 Quantum Mechanical Analysis

Ultimately, we treat the problem entirely quantum mechanically. First the
Schrödinger equation takes the form

− 1

2M
[∂2x + (∂2y + ieBx)2]Ψ(x⃗) = EΨ(x⃗). (17)
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Since [py, H] = 0 due to translational invariance in the y-direction, one can look
for energy eigenstates which are also eigenstates of py.

This motivates us to make the following ansatz

Ψ(x⃗) = ψ(x) exp(ipyy). (18)

As a result of applying this, we obtain

[− ∂2x
2M

+
1

2
Mω2(x+

py
Mω

)2]ψ(x) = Eψ(x). (19)

This is simply a shifted one-dimensional harmonic oscillator and thus the energy
spectrum is the same,

E = ω(n+
1

2
). (20)

In fact, it tells us that the energy of the particle does not depend on its momentum
py leading to continuous infinite degeneracy of each energy level. Famously they
are called Landau levels, named after the Soviet physicist Lev Landau [10] . The
energy eigenstates take the form

⟨x⃗|npy⟩ = ψn(x+
py
Mω

) exp(ipyy). (21)

Here ψn stands for the nth eigenstate of a one-dimensional harmonic oscillator.
In a similar way one finds the eigenstates of the momentum Px = −i∂x + eBy,

⟨x⃗|npx⟩ = ψn(y −
px
Mω

) exp(ipxx) exp(−ieBxy). (22)

We know that the center of the cyclotron orbit plays the role of a RLV. Therefore
it is interesting to inspect the relevance of it with respect to the degeneracy of the
energy levels. Indeed the commutation relations are analogous to the classical case
[H,Rx] = [H,Ry] = [H,L] = 0. Moreover, we can simply think of the RLV as
something that also generates translations. This is easily visible when we consider
how the RLV and the angular momentum are given in the quantum mechanical case

Rx = − Py

eB
=
i∂y
eB

, Ry =
Px

eB
= y − i∂x

eB
,

L = x(−i∂y +
eBx

2
)− y(−i∂x +

eBy

2
).

(23)

Additionally, similar to the classical case, the radius squared of the cyclotron orbit
is again conserved

r2 = (x−Rx)
2 + (y −Ry)

2 = (x− i∂y
eB

)2 − ∂2x
e2B2

=
2H

Mω2
. (24)
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In fact, it is useful to express the Hamiltonian as follows

H =
1

2
Mω2r2. (25)

Notably, just as the Poisson bracket {Rx,Ry} did not vanish, [Rx,Ry] = i
eB

implies
that the coordinates of the RLV cannot be measured simultaneously, even though
the radius itself is associated to a certain energy and therefore is definite in an
energy eigenstate.

Let us inspect the commutation relations between the coordinates of the RLV
(Rx,Ry) and the angular momentum Lz.

[Lz, Rx] = iRy, [Lz, Ry] = iRx. (26)

This looks very similar to the relations we know from the hydrogen atom, which
are [Lz, Lx] = iLy and [Lz, Ly] = −iLx.
Therefore it is natural to introduce

R± = Rx ± iRy (27)

which leads to

[L,R±] = ±R±. (28)

From that we can identify R+ and R− as raising and lowering operators of Lz.

To complete the set of commutation relations we have

[R+, R−] =
2

eB
. (29)

2.4 Raising and Lowering Operators

In the previous subsection we have seen similarities between the model of a
particle in a constant magnetic field and a one-dimensional harmonic oscillator.
Thus it makes sense to try to construct raising and lowering operators for the energy.

We approach this by using the representation of the harmonic oscillator Hamiltonian
through its raising and lowering operators,

H = ω(a†a+
1

2
), [a†, a] = 1. (30)

Previously, we found a relation between the Hamiltonian of a particle in a magnetic
field and the radius squared of the cyclotron orbit which itself is related to the RLV.
We now have the following expression

H =
1

2
Mω2r2 =

1

2
Mω2[(x−Rx)

2 + (y −Ry)
2]. (31)

9
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From there we find

a =

√
Mω

2
[x−Rx − i(y −Ry)], a

† =

√
Mω

2
[x−Rx + i(y −Ry)] (32)

as the lowering and raising operators. By using the commutation relations between
the angular momentum and the mentioned operators, which are

[L, a] = −a, [L, a†] = a†, (33)

we clearly see that they also raise and lower the angular momentum. Going back to
the previous subsection, we identified R+ as a raising and R− as a lowering operator
as well. By introducing a slight modification, we obtain

b =

√
Mω

2
R+, b

† =

√
Mω

2
R−. (34)

By inspection we get

[L, b] = b, [L, b†] = −b†. (35)

From there we see that b raises and b† lowers the angular momentum. Between the
raising and lowering operators the following commutation relations exist

[a, b] = [a†, b] = [a, b†] = [a†, b†] = 0, [b, b†] = 1. (36)

By comparing the model of a two-dimensional harmonic oscillator with a particle in
a magnetic field we conclude the following. Both have a set of two commuting raising
and lowering operators, but in contrast to the 2-dimensional harmonic oscillator the
Hamiltonian of the particle in a magnetic field consists only of a†a [9] .

2.5 Different Description of the Hamiltonian

It is possible to describe the Hamiltonian by the following expression

H =
1

2
Mω2(R2

x +R2
y) + ωL = ω(b†b+

1

2
+ L) = H0 + ωL, (37)

where

H0 = ω(b†b+
1

2
) (38)

is the Hamiltonian of a 1-dimensional harmonic oscillator. Furthermore, the angular
momentum is given by

L = a†a− b†b. (39)

It is important that the raising and lowering operators b† and b commute with the
Hamiltonian H,

[H, b] = [H0, b] + ω[L, b] = 0, [H, b†] = [H0, b
†] + ω[L, b†] = 0. (40)

10
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2.6 Energy Spectrum and Eigenstates

The previously found relation between b, b† and the Hamiltonian leads us to an
interesting symmetry.
Consider the eigenstate constructed using the raising operators a† and b†.

|nn′⟩ =
(a†)n√
n!

(b†)n
′

√
n′!

|00⟩. (41)

|00⟩ is the ground state which automatically means that it will be annihilated by
both a and b.

a|00⟩ = b|00⟩ = 0. (42)

The state |nn′⟩ is an eigenstate of the Hamiltonian

H|nn′⟩ = ω(n+
1

2
)|nn′⟩, (43)

and also of the angular momentum

Lz|nn′⟩ = (n− n′)|nn′⟩ = m|nn′⟩. (44)

We need to emphasize that the quantum number n ∈ N0 is non-negative whereas
the quantum number m = n − n′ ∈ Z can be any integer. With this in mind, it
is evident that the system has infinitely degenerate Landau levels because states
with the same n but different n′ have the same energy.

In Section 2.3 we found an infinite degeneracy, which is with respect to the
continuous momentum py. This is a bit different from the one we just found now.
The latter has a discrete set of quantum numbers m and therefore the degeneracy
is infinitely countable. This difference comes from the fact that we are operating in
two different Hilbert spaces. The states relating to py are normalized to δ-functions
and thus belong to an extended Hilbert space, whereas the countable ones with m
are normalizable.

It is astounding that a single particle in a constant magnetic field has an infinitely
degenerate ground state. This fact is commonly related to a spontaneous breakdown
of symmetry [9] .

3 Pauli Equation – a Non-relativistic Spin 1
2

Extension of the Schrödinger Equation
Until now, we only inspected the Schrödinger equation involving a constant
magnetic field. We now take a look at how the equation changes when we include
the spin of the charged particle. Specifically, we are going to consider a spin 1

2

particle, since we are discussing charged fermions.

11
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3.1 Derivation of the Pauli Hamiltonian

The newly added spin leads to the fact that it is coupled to B⃗ such that the
Hamiltonian looks as follows

H =
1

2M
((p⃗+ eA⃗)2 + eσ⃗ · B⃗). (45)

Since A⃗ is the one introduced in eq.(1) and B⃗ = (0, 0, B), the Hamiltonian becomes

H =
1

2M
(p2x + (py + eBx)2 + eBσz) (46)

We replace eB by mω and get

H =
1

2M
(p2x + (py +Mωx)2 +Mωσz) (47)

After performing some transformations it ends up being

H =
1

2M
p2x +

1

2
Mω2(x+

py
Mω

)2 +
1

2
ωσz. (48)

This is relatively similar to eq.(19) with the addition of having a coupling between
the spin and the magnetic field. Therefore Mωσz or eBσz comes with it.
We can further express it in a more familiar fashion as

H =
1

2M
p2x +

1

2
Mω2(x+

py
Mω

)2 + ωsz, (49)

where sz = ±1
2

is the spin of the charged fermion.

4 Relativistic Quantum Mechanics
The Pauli equation considers spin-orbit coupling but no further relativistic effects.
Since these effects may play an important role, it is necessary to develop a more
complete equation. Dirac managed to find an equation which fulfills the conditions
imposed by special relativity.
The so-called Dirac equation is a relativistic extension of the Schrödinger equation
to describe spin-1

2
fermions. It is a ground-breaking discovery due to its prediction of

the existence of antimatter, as Dirac himself denoted the negative energy solutions
corresponding to positively charged anti-electrons. The existence of that particle,
named positron, was later confirmed by Anderson who discovered it. But how did
Dirac find his beautiful equation?

4.1 Dirac Equation of a Free Particle

At first we have the Schrödinger equation which looks as follows

− 1

2M
∇2Ψ+ VΨ = i

∂Ψ

∂t
. (50)

12
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This, in fact, is just a different representation of the operators p⃗ and E, which are
the following

p⃗ = −i∇⃗, E = i
∂

∂t
. (51)

This automatically brings us to the well-known energy conservation

p⃗ 2

2M
+ V = E. (52)

In relativistic quantum theory we need to consider the relativistic dispersion relation

E2 = p2 +M2. (53)

By using eq.(51) and (53), we derive the Klein-Gordon equation

∂2Ψ

∂t2
= ∇2Ψ−M2Ψ. (54)

We express the wavefunction Ψ as follows

Ψ = ψ(r⃗)e−iEt. (55)

The Klein-Gordon equation is a second order in space and time differential equation
and describes bosons.

Let us have a look at the continuity equation

∂ρ

∂t
= −∇⃗ · j⃗. (56)

Here ρ is the charge density and j⃗ the current density. It is possible to get an
equation of this form if we take the Klein-Gordon equation for Ψ and Ψ∗ and
multiply each with their respective complex conjugate and the imaginary unit i.

iΨ∗∂
2Ψ

∂t2
= iΨ∗∇2Ψ− iM2Ψ∗Ψ, (57)

iΨ
∂2Ψ∗

∂t2
= iΨ∇2Ψ∗ − iM2ΨΨ∗. (58)

By subtracting eq.(58) from eq.(57) we obtain

i(Ψ∗∂
2Ψ

∂t2
−Ψ

∂2Ψ∗

∂t2
) = i(Ψ∗∇2Ψ−Ψ∇2Ψ∗). (59)

From there we conclude the following equation

i
∂

∂t
(Ψ∗∂Ψ

∂t
−Ψ

∂Ψ∗

∂t
) = i∇⃗ · (Ψ∗∇⃗Ψ−Ψ∇⃗Ψ∗). (60)

This allows us to easily identify the charge density and the current and finally we
have

ρ = i(Ψ∗∂Ψ

∂t
−Ψ

∂Ψ∗

∂t
),

j = −i(Ψ∗∇⃗Ψ−Ψ∇⃗Ψ∗).

(61)

13
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If we plug eq.(55) into eq.(61), we see that ρ = 2E|ψ|2. According to the Klein-
Gordon equation (53) negative energy solutions are allowed and thus negative charge
densities ρ would exist. This is not an issue since there are negative charges.
Dirac was looking for a wave equation that was of first order in time.
For that reason he proposed the following first-order linear differential equation in
time and all spatial coordinates

i
∂

∂t
Ψ = α⃗ · (−i∇⃗)Ψ +MβΨ, (62)

where α⃗ = (αx,αy,αz) with (x, y, z being spatial coordinates) and β are matrices,
but their size and the elements have to be found. With H = i ∂

∂t
and p⃗ = −i∇⃗,

Dirac created a much more compact form of the free Hamiltonian

H = α⃗ · p⃗+ βM. (63)

But how do the matrices α and β look like? For that it is necessary that the Dirac
equation is consistent with the relativistic dispersion relation. By squaring eq.(63)
we get the following

H2 = (α⃗ · p⃗+ βM)2 = p⃗ 2 +M2. (64)

With p⃗ 2 = p2x+p
2
y+p

2
z. The Dirac equation obeys the relativistic dispersion relation

if the following conditions are fulfilled

α2
i = I, β2 = I, αiαj + αjαi = 2δij, αiβ + βαi = 0, (65)

where i, j are spatial directions. Ordinary numbers always commute and in eq.(65)
we see an anticommuting relation, which automatically implies that αi and β must
be matrices.
We go even further and claim that the dimension of the matrices needs to be even.
A simple proof explains it [11] . Let’s take eq.(65) and change it slightly

αiβ = −βαi = −Iβαi (66)

where I is the 4×4 identity matrix

I =

(
1 0
0 1

)
. (67)

Now remember a simple theorem

det(AB) = det(A)det(B),

det(αiβ) = det(αi)det(β) = det(−I)det(β)det(αi).
(68)

The important fact that determinants of matrices are scalars and therefore get
canceled at two sides of an equation if they are the same, leaves us with det(−I) =
(−1)N with N being the dimension of the matrix. Furthermore the latter needs to
fulfill the following condition

1 = (−1)N . (69)

14
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From there we automatically see that the dimension of the matrices needs to be
even. Dirac made use of that property and was able to find a set of 4 × 4 matrices.
A convenient choice is

αi =

(
0 σi
σi 0

)
, β =

(
I 0
0 −I

)
, (70)

with σi being the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (71)

4.2 Relativistic Motion of a Particle in a Constant Magnetic
Field

In our case we investigate a particle in a constant magnetic field. The adapted
Dirac equation looks as follows

HB = α⃗ · (p⃗+ eA⃗) + βM, (72)

where again A⃗ = Bxe⃗y. Before we try to find a degeneracy operator for the
relativistic magnetic case, we first have to define some operators, which are going
to provide the foundation for further calculations.
The momentum operators as such are defined as

Px = px + eBy, Py = py, Pz = pz. (73)

Furthermore the total angular momentum is defined as

J⃗ = L⃗+ S⃗, S⃗ =
1

2
σ⃗I =

1

2
Σ⃗, L⃗ = r⃗ × (p⃗+ eA⃗), r⃗ =

xy
z

 . (74)

Starting from the Hamiltonian in eq.(72), we investigate whether the system is
translation and rotation invariant. As such the momentum and the total angular
momentum operators need to commute in the respective directions. First let’s check
the possibility of translation invariance.
In order to prove this, one needs to investigate the commutator between HB and
P⃗ .
We start by inspecting [HB, Py] and [HB, Pz]. We know that [pi, pj] = 0 for i, j∈
{x, y, z}

[eBαyAy, py] = [eBαyAy, pz] = 0. (75)

The above relation and the fact that all the other commutators are also zero leads
to the conclusion that [HB, Py] = [HB, Pz] = 0 and therefore HB commutes with
both Py and Pz.
Now [HB, Px] needs to be checked. There the sticking points are [eBαypy, eBy]
and [eBαyAy, px]. The results are the following

[eBαypy, eBy] = −ieBαy, [eBαyAy, px] = ieBαy. (76)
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Since the eqs.(76) cancel each other out, we conclude that [HB, Px] = 0 holds as
well. This is indeed compatible with the non-relativistic analogue.
Now we take a look at the total angular momentum. Due to the magnetic field
pointing into the z-direction our guess was that the Hamiltonian must commute
with the z-component of the total angular momentum. To start with, we first have
a look at the following components,

Lz = x(py +
eB

2
x)− y(px +

eB

2
y),

HB = α⃗ · (p⃗+ eA⃗) + βM.

(77)

If we consider the following relations

[x, px] = i, [y, py] = i,

[px, x
2] = −2ix, [py, y

2] = −2iy,
(78)

we can identify the non-vanishing commutators in [HB, Lz], which are

[αxpx, xpy] = −iαxpy, [αxpx,
eB

2
x2] = −ieBαxx,

[αyeBx,−ypx] = −ieBαyy, [αypy,−ypx] = iαypx,

[αypy,−
eB

2
y2] = ieBαyy.

(79)

After combining these relations, we get

[HB, Lz] = ipxαy − i(py + eBx)αx. (80)

Next, we inspect [HB, Sz]. The Dirac matrices αi and the spin matrices Sj share
the following commutation relation

[αi, Sj] = iϵijkαk, i, j, k ∈ {x, y, z}. (81)

Applying this to our problem, we get the following non-vanishing commutators

[αxpx, Sz] = −ipxαy, [αypy, Sz] = ipyαx,

[eBxαy, Sz] = eBxαx.
(82)

Again, combining these expressions leads us to

[HB, Sz] = −ipxαy + i(py + eBx)αx. (83)

Interestingly, eq.(83) has exactly the opposite sign as eq.(80). Therefore they cancel
each other out and we have proven

[HB, Jz] = 0. (84)

16



UNIVERSITY OF BERN Ratheban Sellaiah

We summarize the findings as follows

[HB, Px] = 0,

[HB, Py] = 0,

[HB, Pz] = 0,

[HB, Jz] = 0.

(85)

Since all components of the momentum vector commute with the Hamiltonian,
they are constants of motion and therefore are conserved. This automatically tells
us that the system is translation invariant. The conservation of the total angular
momentum component reflects the system’s rotational symmetry about the z-axis.
Next, we analyze the commutators between the conserved momenta,

[Px, Py] = ieB,

[Px, Pz] = 0,

[Py, Pz] = 0.

(86)

Again, as in the non-relativistic case, the operators Px and Py cannot be measured
with absolute precision simultaneously. Let’s see what happens, if we investigate
the commutation relation between the total angular momentum in the z-direction,
Jz, and the momenta,

[Jz, Px] = iPy,

[Jz, Py] = −iPx,

[Jz, Pz] = 0.

(87)

Note that the spin operator Sz does not contribute to the commutator and we
immediately see the similarities with the Poisson brackets in eq.(9). Therefore it
is interesting how the Runge-Lenz vector is related to the Hamiltonian. First, we
define the spatial coordinates, which are exactly the same as in eq.(23).

Rx = − Py

eB
, Ry =

Px

eB
. (88)

Due to the above relation we conclude, as we already did in the non-relativistic
case, that (Rx, Ry) and (Px, Py) are orthogonal. The commutation relation between
the coordinates of the Runge-Lenz vector and the components of the momenta are
as follows

[Rx, Px] = i, [Ry, Py] = i,

[Rx, Py] = 0, [Ry, Px] = 0.
(89)

The results are almost the same as in eq.(11) and eq.(12) with the only difference
to eq.(11) being the imaginary unit i. This is expected, since we are discussing the
quantum mechanical case.
We already found the result of the Poisson bracket between Rx and Ry in eq.(13).
The relativistic quantum mechanical case is similar and therefore

[Rx, Ry] =
i

eB
. (90)
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4.3 Energy Levels in the Relativistic Case

Now we have a look on the Dirac Hamiltonian described in eq.(72) with the
exception that we leave out the z-component of the momentum and set pz = 0.
We use the same approach as we did in the classical and quantum mechanical cases
to see how the Hamiltonian squared and radius squared of the cyclotron orbit are
related to each other.
The reduced Dirac Hamiltonian squared can be expressed as follows

H2
B = (pxαx + (py + eBx)αy + βM)2. (91)

The momenta in this Hamiltonian are reduced to the x and y directions.
Using the relations in eq.(65), the remaining terms are

H2
B = p2x + (py + eBx)2 +M2 + eB{αxpx, αyx}. (92)

We need to find the anti-commutator of {αxpx, αyx}, which gives

{αxpx, αyx} = 2Sz. (93)

All together we end up with the following expression

H2
B = p2x + (py + eBx)2 +M2 + 2eBSz. (94)

In eq.(24) we found a relation between the Schrödinger Hamiltonian and the radius
squared of the cyclotron orbit. We use that to further simplify the expression in eq.
(94), thus leading us to

H2
B = 2MH +M2 + 2eBSz. (95)

This automatically means that the total energy squared described by the Dirac
Hamiltonian in a constant magnetic field can be expressed as follows

E2
B = 2ME +M2 + 2eBsz. (96)

Here, the energy E is that of a harmonic oscillator depicted in eq.(20) and sz = ±1
2
.

We use this to rewrite the expression in eq.(96) and get

E2
B = 2eB(n+

1

2
) +M2 + 2eBsz = 2eB(n+ sz +

1

2
) +M2. (97)

Since the energy of a harmonic oscillator is part of the Dirac energy and we found
energy eigenstates of the former to be infinitely degenerate, this might be the case
here as well. The only difference to the non-relativistic case is that the spin now
influences the energy.

18



UNIVERSITY OF BERN Ratheban Sellaiah

4.4 Accidental Symmetry of the Relativistic Hydrogen Atom

Let us go back to the days when Dirac was busy with finding symmetry operators.
Specifically he was engaged with investigating the accidental symmetry of the
hydrogen atom. Let’s see how the Dirac Hamiltonian of a relativistic hydrogen
atom looks like

HH = α⃗ · p⃗+ βM − e2

r
. (98)

He then discovered that there exists a symmetry which was generated by the
following operator

K = β(Σ⃗ · L⃗+ 1), [H,K] = 0, [J⃗ , K] = 0. (99)

Thus the eigenvalues k of the operator K are derived as follows

σ⃗ · L⃗+ I = (L⃗+ S⃗)2 − L⃗2 − S⃗2 + I

= J⃗2 − L⃗2 +
I
4
,

k = j(j + 1)− l(l + 1) +
1

4

= j(j + 1)− (j ± 1

2
)(j ± 1

2
+ 1) +

1

4

= ±(j +
1

2
).

(100)

The coupling of L⃗ and S⃗ indicates whether they join so that j = l + 1
2

or j = l− 1
2

results. The first one implies k = j + 1
2

and the latter k = −(j + 1
2
).

This automatically leads to the conclusion that the energy eigenstates are defined
by the principal quantum number n as wells as by j, jz and k.

HH |njjzk⟩ = Enk|njjzk⟩, K|njjzk⟩ = k|njjzk⟩. (101)

Finally, the energy eigenvalues are given by

Enk =M(1 +
α2

(n− |k|+
√
k2 − α2)2

)−
1
2 . (102)

For completeness, α = 0.0072973525643 is the fine-structure constant.
The interesting role of k is that there lies an accidental symmetry. Suppose we
have two states with both having the same quantum number n. One of them has
an orbital angular momentum of l and a total angular momentum of j = l + 1

2

(k = j + 1
2
) and the other one an orbital angular momentum of l + 1 and a total

angular momentum of j = l+1− 1
2

(k = −(j + 1
2
)). Since the energy only depends

on |k|, both mentioned states have the same energy and are therefore degenerate. It
gives rise to a 2(2j+1)-fold degeneracy. An exception is the state with the maximal
orbital angular momentum l = n − 1 and the maximal total angular momentum
j = l + 1

2
= n− 1

2
which has only a (2j + 1)-fold degeneracy.
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Moreover, there exists a relativistic equivalent of the Runge-Lenz vector, which is
the Johnson-Lippmann operator denoted as follows

A = iKγ5(
H

M
− β)− αΣ⃗ · e⃗r, [H,A] = 0, [J⃗ , A] = 0, γ5 =

(
0 I
I 0

)
. (103)

As indicated, the operator A commutes with the Hamiltonian so they have a set
of common eigenstates. K anti-commutes with A meaning {K,A} = 0, while A2

plays the role of a supersymmetric "Hamiltonian"

A2 = K2[(
H

M
)2 − 1] + α2. (104)

The eigenvalues of A2 are given by

a2 = k2[(
Enk

M
)2 − 1] + α2 = α2 − α2k2

(n− |k|+
√
k2 − α2)2 + α2

(105)

The operator A acts on energy eigenstates as

A|njjzk⟩ = a|njjz − k⟩. (106)

Interestingly, the operator A relates the two accidentally degenerate states with
quantum numbers ±k. Assume having an eigenstate with maximal j = n − 1

2
then

the state gets annihilated by the operator A due to n = j + 1
2

= k = |k|, such that

a2 = α2 − α2k2

k2 − α2 + α2
= 0 =⇒ a = 0. (107)

This indicates that (with the exception for the maximal j = n − 1
2
), all the other

states are paired and therefore the supersymmetry is not spontaneously broken [12]

[13] .

4.5 Symmetry Operator in the Magnetic Field Case

Now, we follow the same procedure to find similar operators for our problem of a
relativistic particle in a constant magnetic field. Specifically we need to find an
operator like A which relates, for example, the degenerate states with sz = −1

2
,

n = 1 to sz = 1
2
, n = 0 as well as an operator similar to K.

At first, we remember that the total angular momentum in the z-direction is jz =
lz + sz = lz ± 1

2
. Now we construct J2

z

J2
z = L2

z + S2
z + 2LzSz. (108)

Using lz = jz ± 1
2
, we rearrange the above equation and get

2LzSz = j2z − (jz ±
1

2
)2 − 1

4
= ∓jz −

1

2
. (109)
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We see a similarity to eq.(100), except that an additional constant of −1
2

is still
there. We move that to the left side of the equation and get

2LzSz +
1

2
= ∓jz. (110)

The only thing left is to recognize the relation between eq.(99) and eq.(100) and to
use that for our problem. We make the replacement Σz = 2Sz and obtain

KB = β(LzΣz +
1

2
). (111)

The KB operator needs to commute with the Dirac Hamiltonian and the total
angular momentum in the z-direction, Jz. Let’s check these relations

[KB, Jz] = [β(Lz · Σz +
1

2
), Lz +

1

2
Σz] = 0. (112)

The above relation holds, since all the components commute with each other and
therefore the whole expression does. The tricky part is the one with the Dirac
Hamiltonian [HB, KB]. We first focus on [αipi,

1
2
β]. The only non-commuting part

in this bracket is [αi, β]

[αi, β] =

(
0 σi
σi 0

)(
I 0
0 −I

)
−
(
I 0
0 −I

)(
0 σi
σi 0

)
= 2

(
0 −σi
σi 0

)
,

[αipi,
1

2
β] = 2

(
0 −σxpx − σypy

σxpx + σypy 0

)
.

(113)

The commutator [eBαyx,
1
2
β] can be derived from eq.(113) and we get

[eBαyx,
1

2
β] = eB

(
0 −σyx
σyx 0

)
. (114)

From these results we find the following relation

[HB,
1

2
β] =

(
0 −σxpx − σypy − eBσyx

σxpx + σypy + eBσyx 0

)
. (115)

Next we analyze [αipi, βLzΣz],

[αipi, βLzΣz] = βLz[αi,Σz]pi + αiβ[pi, Lz]Σz + [αi, β]LzpiΣz. (116)

We first take a look at [αi,Σz]. Using eq.(81) and eq.(74) we get

[αx,Σz] = −2i

(
0 σy
σy 0

)
, [αy,Σz] = 2i

(
0 σx
σx 0

)
. (117)

Then we have

βLz[αi,Σz]pi = −2iLz

(
0 σy

−σy 0

)
px + 2iLz

(
0 σx

−σx 0

)
py. (118)
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Next, we inspect [pi, Lz]. By using eq.(77), we see that

[px, xpy] = −ipy,

[px,
eB

2
x2] = −ieBx,

[py,−ypx] = ipx,

[py,−
eB

2
y2] = ieBy,

(119)

contribute to the expression. The commutator in the last term of eq.(116) was
already found in eq.(113). Since {αi, β} = 0 and [αi, β] is the expression given by
eq.(113), we obtain

αx,yβ =

(
0 −σx,y
σx,y 0

)
. (120)

We go further and calculate αx,yβΣz

αx,yβΣz =

(
0 −σx,y
σx,y 0

)(
σz 0
0 σz

)
=

(
0 −σx,yσz

σx,yσz 0

)
. (121)

We use σxσz = −iσy and σyσz = iσx

αiβ[pi, Lz]Σz = (py + eBx)

(
0 σy

−σy 0

)
+ (px + eBy)

(
0 σx

−σx 0

)
. (122)

For [αi, β]LzpiΣz, we use the fact that if {αi, β} = 0 holds, then [αi, β] = 2αiβ and
eq.(121) to get

[αi, β]LzpiΣz = −2iLz

(
0 −σy
σy 0

)
px + 2iLz

(
0 −σx
σx 0

)
py. (123)

There is one commutator left from the Hamiltonian to calculate, which is

[eBαyx, βLzΣz] = eBβLz[αy,Σz]x+ eBαy · β[x, Lz]Σz + eB[αy, β]LzxΣz

= 2ieB

(
0 Lzσxx

−Lzσxx 0

)
− ieB

(
0 −yσyσz

yσyσz 0

)
+2ieB

(
0 −Lzσxx

Lzσxx 0

)
= eB

(
0 −yσx
yσx 0

)
.

(124)

After having calculated all the necessary commutators we see which ones cancel
each other out. We start with [αipi, βLzΣz]. If we add up eqs.(118) and (123), they
cancel each other out.
Eqs.(115), (122), and (124) cancel each other out as well.
We conclude that HB, commutes with KB

[HB, KB] = 0. (125)
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4.6 Johnson-Lippmann Operator

Analogously to the approach followed in the relativistic hydrogen atom, Johnson
and Lippmann published a paper in which they did engage themselves with the
relativistic motion in a magnetic field. In addition to our 2-dimensional case, they
included pz as well.
The Hamiltonian is defined as follows

H = ρ1σ⃗ · π⃗ + ρ3M. (126)

Here, π⃗ = (πx, πy, πz) is the kinetic momentum expressed as

πx = px + eBy, πy = py, πz = pz. (127)

Moreover σ⃗ = (Σx,Σy,Σz) and

ρ1 =

(
0 I
I 0

)
, ρ3 =

(
I 0
0 −I

)
= β (128)

complete the set. By inspection, it is easy to verify that this is consistent with
eq.(72).
Since σ⃗ commutes with both ρ1 and ρ3, it is possible to find an operator, by forming
the product of π⃗ and σ⃗, which commutes with H. This operator takes the form

I = π⃗ · σ⃗. (129)

Due to the fact that it commutes with H, it is a conserved quantity and therefore
an integral of motion. I and H have a set of common eigenfunctions and these
represent states in which the spin is parallel or antiparallel to the momentum.
From there on the Hamiltonian can be expressed in terms of I as

H = ρ1I + ρ3M. (130)

By defining F as an eigenvalue of I, it is possible to represent the Hamiltonian as
follows

H = ρ1F + ρ3M. (131)

By introducing the quantities νi

ν1 =
ρ1M − ρ3F√
F 2 +M2

,

ν2 = ρ2,

ν3 =
ρ1F + ρ3M√
F 2 +M2

,

(132)

the Hamiltonian becomes
H = ν3[F

2 +M2]
1
2 . (133)

Using the fact that ν2i = 1 and νi has the same commutation relations as ρi, the
eigenvalues of ν3 are ±1. Therefore H has the energy eigenvalues

E = ±[F 2 +M2]
1
2 . (134)
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Suppose the eigenvalues ±F of the operator I exist, then the energy E is degenerate
in the sign of F . This is analogous to eq.(102). Therefore an operator might exist,
which commutes with the Hamiltonian but anticommutes with I. This operator
has the ability to switch between degenerate states similar to the operator A in the
relativistic hydrogen atom case.
Another thing we noticed from eq.(97) is that the energy levels have a spin
degeneracy. Hence, it is useful to express I by

I = σxπx + σyπy + σzp, (135)

where p is an eigenvalue of πz. It is known that σxπx + σyπy anticommutes with
σzp and therefore the product of both anticommutes with I. This leads to

T = iρ3(I − σzp)σz = iρ3(Iσz − p) (136)

anticommuting with I and commuting with H.
We know from [14] that the energy eigenvalues are given by

E = ±[p2 +M2 + 2eB(n+ sz +
1

2
)]

1
2 , (137)

thus implying that from [15]

F = ±[p2 + 2eB(n+ sz +
1

2
)]

1
2 . (138)

In fact, we can define a state similar to |njjzk⟩ in Section 4.4. Let’s choose
|njjzF ⟩.
Since H and I commute, we know that they have a set of common eigenstates, of
which one is |njjzF ⟩. Applying I on that state, gives us

I|njjzF ⟩ = F |njjzF ⟩. (139)

At the same time applying the operator T , which switches between degenerate
states, gives the following result

T |njjzF ⟩ = t|njjz − F ⟩. (140)

We were able to reproduce the energy eigenvalues for the system which involves a
constant magnetic field in the z direction. This is visible if one sets p = 0 in eq.
(137) and compares with the square root of eq.(97).
Moreover there exists an operator T , which switches between degenerate states
similar to the operator A in the hydrogen atom and an operator I, which is
analogous to the operator K in eq.(99).

24



UNIVERSITY OF BERN Ratheban Sellaiah

5 Conclusion
The system consisting of a charged particle in a constant magnetic field has an
accidental symmetry. Specifically, by performing a classical analysis, we found
that Px, Py and Lz are 3 generators which are conserved. Since the classical
charged particle moves on a closed circular orbit, the fixed center plays the role of a
Runge-Lenz vector. By inspecting the radius squared of the cyclotron orbit circle,
we explored that it has a proportionality relation with the energy and therefore is
conserved.

Moving to the quantum mechanical case, the procedure is similar to the classical
one with the addition that the Landau levels with the same quantum number and
different m do have the same energy, such that they are infintely degenerate.

Involving spin and relativistic effects leads to the Dirac equation. Having the spin
in this system, the total angular momentum Jz is a conserved quantity. It later
was found that the energy depends on the spin of the particle. Analogously to the
accidental symmetry of the relativistic hydrogen atom, it was possible to find an
operator KB which generates a symmetry. More importantly, since the spin plays
a role for the energy levels, it leads to doubly infinitely degenerate energy levels.
This was indeed an interesting exploration since in the classical case it was only
infinitely degenerate.
Finally, Johnson and Lippmann found an operator I, which is a symmetry operator
and another operator T , that allows us to jump between degenerate states.
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