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Introduction

The foundation of this research project was Prof. Uwe-Jens Wiese’s idea to develop a new
renormalization group (RG) transformation on the Ising model that could be solved numerically
by the means of the Monte Carlo cluster algorithm, therefore we call it cluster-inspired RG.
The cluster algorithm has the power to maintain a high efficiency at the critical point, where
other algorithms fail. The critical point is of special interest when doing RG. The flow of an
RG transformation starting at the critical point will remain on the critical surface and may
approach a fixed point in theory space. Fixed points are interesting for many reasons. At
lattice theory living at a fixed point loses all its lattice artifacts and is scale invariant. The
critical surface related to the fixed point forms a universality class of theories which all show
universal behavior. This holds for seemingly unrelated theories like the Ising model and the
thermodynamical model of water. The ultimate goal of the development of cluster-inspired
RG will be to approach fixed points and generate data to determine their Hamilton functions
numerically. The hope is to parametrize the fixed point of the 2D Ising model with higher
accuracy than before and perhaps to parametrize the fixed point of the 3D Ising model. Even
though this project has not yet progressed to that point, cluster-inspired RG may have the
potential to do so. It is not known to have been done before and the drastic increase in
computational power within the last decades can be an augmenting factor for its success.

Chapter 1 provides background information on the Ising model and general Ising-type lattice
models, shows ways to solve the 1D Ising model, and gives an introduction on phase transitions
and critical phenomena. Chapter 2 introduces the Monte Carlo cluster algorithm for the Ising
model, presents results obtained on the 2D square lattice, and discusses error analysis. Chapter
3 explains the concept of RG applied to the Ising model and introduces the concept of cluster-
inspired RG. Chapter 4 discusses our analytical work to it on the 1D Ising model, which is the
first major part of research we did on the project. And Chapter 5 discusses the application
and verification of cluster-inspired RG on the 2D Ising model, which is the second major part
of the project.
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1 The Ising Model

1.1 Ising-Type Models

Ising-type models are lattice models. A lattice is a regular structure of points in space, called
lattice sites, with discrete translational, rotational and reflectional symmetries. Transformations
are symmetries of a lattice if they map all lattice sites onto each other in such a way that their
relative positions remain unchanged.

A section of a 2D square lattice with lattice spacing a is displayed in Figure 1.1. An infinite
lattice of that kind has a discrete translational symmetry by multiples of a and a 90◦ rotational
and reflectional symmetry. These symmetries extend to a finite lattice if the shape of the
lattice also obeys the rotational and reflectional symmetries and periodic boundary conditions
are chosen. The shape of a finite 2D square lattice that obeys the symmetries, is also a
square. Periodic boundary conditions imply that the lattice repeats itself at its boundary
in each translationally symmetric direction, allowing a finite lattice to maintain translational
symmetry; whereas open boundary conditions would refer to a lattice that ends at its boundary.

a

Figure 1.1: Section of a 2D square lattice with lattice spacing a.

Ising-type models are based on identical spin variables, or spins, that live on a lattice. Each
spin has its own lattice site and can take two discrete values of spin up and spin down, which
are sometimes illustrated as ↑ and ↓ or as two different colors. We choose to set spin up to +1
and spin down to −1. If two spins have the same value, they are called parallel and otherwise
anti-parallel. A section of a 2D square lattice Ising-type system is illustrated in Figure 1.2.

1.1.1 The Hamilton Function, the Boltzmann Weight and the Probability

Ising-type models belong to the field of statistical physics, a field that describes physical systems
in a statistical way instead of analysing their dynamics. The state of an entire Ising-type
system is called configuration and denoted [s]. It consists of all spins’ states together, thus
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: +1
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Figure 1.2: Illustration of a 2D square lattice section of an Ising-type system. The red and
green dots stand for spin up and spin down.

[s] = [s1, s2, . . . , sn], where si is a single spin, with i ∈ {1, . . . , n} being the spatial index related
to the spin’s lattice site. Instead of describing the system’s dynamics, one assigns a probability
to each configuration, predicting how frequently the system will be found in that configuration
when measured.

The probability of a configuration is determined by the Hamilton function H[s], a real quantity
describing the energy of the system, as well as the temperature, usually converted to its inverse
β = 1

kBT
, called the inverse temperature, where kB is Boltzmann’s constant. A configuration’s

probability follows the Boltzmann distribution, meaning that it is proportional to its Boltzmann
weight

exp(−βH[s]), (1.1)

that must be normalized by the partition function

Z =


[s]

exp(−βH[s]), (1.2)

to become a a probability. The probability of a configuration then is

P [s] =
1

Z
exp(−βH[s]) =

exp(−βH[s])
[s̃] exp(−βH[s̃])

, (1.3)

such that the sum of all probabilities


[s] P [s] correctly adds up to 1.

The Boltzmann distribution implies that at finite temperatures, low energy configurations are
more probable than high energy configurations. At zero temperature, or β → ∞, the con-
figurations with the lowest energy are the only ones that have a non-zero probability. With
increasing temperature, or decreasing β, the probability of high energy configurations increases
more and more, and in the high temperature limit, where β → 0, the Boltzmann distribution
converges towards the uniform distribution, where all configurations have equally probability.

The term Boltzmann weight is often abbreviated as weight in this thesis.
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1.1.2 Physical Observables and Their Expectation Values

One can measure physical observables on Ising-type models. They are functions of the configu-
ration that are typically of macroscopic nature, relating to the entire system and respecting the
lattice symmetries. We denote them O[s]. In the best case, one can measure an observable’s
expectation value, that is

〈O〉 = 1

Z



[s]

O[s]exp(−βH[s]). (1.4)

However, in experiment one will instead measure the empirical mean value over a sample, which
is

Ō =
1

Z



[s̃]

O[s̃]exp(−βH[s̃]), (1.5)

where [s̃] symbolize the sample configurations. One is also interested in the variance

(∆O)2 = 〈O2〉 − 〈O〉2, (1.6)

and the standard deviation ∆O.

Important observables of Ising-type models are the energy, the magnetization, the susceptibility,
the correlation function and the correlation length. The energy is represented by the Hamilton
function H[s], the quantity which defines the interactions of the system through the energies
they induce. It will be discussed in more detail in the next section.

The magnetization M[s] is defined as the sum over all spin values

M[s] =


i

si. (1.7)

It is responsible for the induced magnetic field of a ferromagnet. It is an extensive quantity, as
it is proportional to the system size. The related intensive quantity, which is independent of
the system size, is the average spin value s̄, through which the magnetization can be written as

M[s] = V s̄, (1.8)

where V is the volume or number of spins in the system. The translational symmetry of the
lattice implies that expectation values of individual spin values must all be equal, such that
〈si〉 = 〈sj〉 for any two lattice sites i, j. It follows that these must also be equal to the expec-
tation value of the average spin value. Therefore, the expectation value of the magnetization
can be written as

〈M〉 =


i

〈si〉 = V 〈si〉 = V 〈s̄〉. (1.9)

The susceptibility measures how strongly local fluctuations in the magnetization are carried
through the system and is related to the interactions between more distant spins in the system.
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It is defined as

χ =
1

V
(∆M)2 =

1

V
(〈M2〉 − 〈M〉2). (1.10)

The susceptibility is also an extensive quantity, as χ = 1
V
(∆M)2 = V (∆si)

2, and using again
the translational symmetry of the lattice, it can be rewritten as

χ =
1

V



i



j

(〈sisj〉 − 〈si〉〈sj〉) =


j

〈sisj〉 − V 〈s̄〉2. (1.11)

〈sisj〉 is known as the (two-spin) correlation function. It describes the correlation between the
two spins si and sj. Positive values imply that the spins si and sj tend to align, negative values
that they tend to anti-align and a zero value implies that they are uncorrelated. One defines the
connected correlation function 〈sisj〉c = 〈sisj〉 − 〈s̄〉2, which subtracts the influence of overall
magnetization from the correlation function. One can then express the susceptibility through
the connected correlation function as

χ =


j

〈sisj〉c. (1.12)

The connected correlation function typically decays exponentially with the distance for large
distances |i− j| and allows the definition of a correlation length ξ through

〈sisj〉c ∼ exp(−|i− j|/ξ). (1.13)

The correlation length is a limit for the range in which physical phenomena may appear in the
system. Physical phenomena can be seen as patterns of correlated spin values. They cannot
adopt length scales significantly beyond the correlation length, as spins at further distances
become largely uncorrelated and their relative behavior becomes random. Only if a system
is at a critical point, which is described in Section 1.4, its correlation length diverges, and
the connected correlation function does not decrease exponentially but only with a power-law.
The susceptibility then diverges as well and phenomena of arbitrarily long range appear in the
system. In case of a finite system, the correlation length will not diverge but instead approach
the size of the system.

1.1.3 Structure of the Hamilton Function and Locality

An Ising-type Hamilton function typically consists of a sum of interaction terms. These terms
are typically products of spins, known as n-spin interactions, that are summed over the whole
system. Each term has a coefficient called the corresponding coupling. Interactions can be
classified as ultra-local, local and non-local. Ultra-local means that the interaction occurs only
between spins up to a certain distance, local means that it decreases exponentially with distance
and non-local means that it decreases only up to a power-law.

9



A simple ultra-local interaction term is the 1-spin interaction

K1



i

si, (1.14)

appearing in the Ising model as an external magnetic field. It implies that individual spins
have states with higher and lower energies. The other ultra-local interaction term appearing in
the Ising model is the (2-spin) nearest-neighbor interaction

K2



〈i,j〉

sisj, (1.15)

with


〈i,j〉 being the sum over all neighboring sites i and j. A local, yet not ultra-local 2-spin
interaction would instead be

K3



i,j: i ∕=j

sisje
−|i−j|. (1.16)

and two non-local versions of it would be

K4



i,j: i ∕=j

sisj
|i− j| , K5



i,j: i ∕=j

sisj. (1.17)

Another ultra-local interaction term involving more spins would be the 3-spin interaction

K5



i,j,k: i ∕=j ∕=k, |i−j|2+|j−k|2+|k−i|2<6a2

sisjsk, (1.18)

which would also include spin triples that are slightly more distant than being pairwise nearest
neighbors.

Ising-type models are generally local, meaning that they are built from local interactions. If
they were not, they could not be related to known physics.

Considerations of how to parametrize the interactions of an unknown Hamilton function will
become important at some stage in the search for the fixed point Hamilton function.

1.2 The Ising Model

1.2.1 Basic Properties of the Ising Model

The Ising model was originally designed as a model for a ferromagnet and because of that, the
variables are called spins. Its applications were then extended to the study of phase transitions
and critical phenomena and its importance increased with the discovery of universality. Today
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it still has many other applications. e.g. as a toy model for lattice field theory [1] and in neural
network models [2].

The Ising model is an ultra-local Ising-type model with the Hamilton function

H[s] = −J


〈ij〉

sisj − B


i

si. (1.19)

Its first term represents nearest-neighbor interactions and the second term represents the in-
fluence of an external homogeneous magnetic field B. This thesis focuses on the ferromagnetic
Ising model, assuming a positive value of J such that parallel spins are energetically favored
over anti-parallel spins1.

Of special interest in this theses is the Ising model with B = 0, which only includes nearest-
neighbor interactions and obeys an additional Z(2) spin-flip symmetry, meaning that any ex-
pectation values are invariant under the global spin-flip transformation, changing the values
of all spins. The magnetic field explicitly breaks this symmetry by favoring spins that are
aligned with it. But it is zero at the critical point of any n-dimensional Ising model and an RG
transformation, which will be introduced in Chapter 3, usually starts at the critical point of a
system to approach a fixed point in theory space. Therefore, it is sufficient for this project to
set it to zero, even though most concepts explained in this thesis could in principle be extended
to a non-zero magnetic field.

The Ising Boltzmann weight, here denoted W [s], is

W [s] = exp(−βH[s]) = exp



βJ


〈ij〉

sisj + βB


i

si



, (1.20)

and the partition function is

Z =


[s]

W [s] =


[s]

exp(−βH[s]) = (


i



si=±1

) exp



βJ


〈ij〉

sisj + βB


i

si



. (1.21)

The parameter J can be set to 1 w.l.o.g. when restricting to the ferromagnetic Ising model.
This is possible because J only appears in the combination βJ and when J is set to 1, no
parameters are actually lost as β still remains as a coupling parameter for the nearest-neighbor
coupling. When we also set B to zero, the Hamilton function and the Boltzmann weight reduce
to

H[s] = −


〈ij〉

sisj, W [s] = exp



β


〈ij〉

sisj



. (1.22)

The Boltzmann weight can further be factored to local Boltzmann weights w[si, sj], one for

1An anti-ferromagnetic Ising model assuming negative values of J would yield completely different character-
istics.
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each combination of neighboring sites i, j, as

W [s] = exp



β


〈ij〉

sisj



 =


〈ij〉

exp(βsisj) =


〈ij〉

w[si, sj], with w[si, sj] = exp(βsisj).

(1.23)

1.2.2 The Link Representation and Loop Complexity

The term link may refer to the connections between neighboring lattice sites, commonly illus-
trated as lines. But, it is also used here to describe link variables that can be defined from two
neighboring spins as l〈ij〉 = sisj. They take the values +1 for parallel and −1 for anti-parallel
spins.

When B is set to zero, links can fully replace the spins2, such that the Hamilton function,
Boltzmann weight and partition function turn to

H[l] = −


〈ij〉

l〈ij〉, W [l] = exp



β


〈ij〉

l〈ij〉



, Z =


[l]

W [l] =


[l]

exp



β


〈ij〉

l〈ij〉



. (1.24)

One may factor W [l] to local weights w[l〈ij〉]. However, the partition function cannot be solved
by simply applying the local sums


l〈ij〉

to the local weights, because links are not independent

variables and not all link configurations are physical. They originate from spins and their
configurations must follow certain constraints that are related to loops in the lattice. Let us
illustrate this issue on the example of a 2D square lattice and look at a section of four spins,
displayed in Figure 1.3.

s1 s2

s3 s4

l〈12〉

l〈23〉

l〈34〉

l〈41〉 .

Figure 1.3: Elementary loop on a 2D square lattice.

One can follow a loop along the four links, called elementary loop, to end up back at the same
site. A link configuration, with the first three links being +1 and the last being −1 would result
in a contradiction in the spin values. One can identify the rule that products of links across
each loop in the system must equal +1 to obtain a physical configuration. Larger loops within
the system can then be reduced to elementary loops.

2In fact this also works for nonzero B, but then it is more complicated.
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A finite 1D Ising system with open boundary conditions, consisting of n spins, does not contain
any loops, such that any link configuration is physical and the partition function can indeed be
solved by applying the local sums to the local weights as

Z = 2


〈ij〉

(


l〈ij〉=±1

exp

βl〈ij〉


) = 2(2 cosh β)n−1. (1.25)

The overall factor 2 accounts for the fact that each link configuration corresponds to two
different spin configurations related by spin-flip transformation. The power n− 1 relates to the
number of links in the system.

If periodic boundary conditions are chosen instead, there is one loop going through the whole
system, adding complexity to the system. Solving the partition function takes some more
transformation steps, as will be seen in the next section. The two 1D Ising systems with open
and periodic boundary conditions are illustrated in figure 1.4.

In 2D, loops become omnipresent, and with increasing dimension also the number of loops per
spin increases. This imposes a major difficulty on the analytical solutions of higher dimensional
Ising models. Currently even the 3D Ising model remains unsolved.

s1 s2 si−1 si si+1 sn−1 sn. . . . . .

s1 s2 si−1 si si+1 sn−1 snsn s1. . . . . .

(a)

(b)

Figure 1.4: Illustration of two finite 1D Ising systems, each consisting of n spins. (a) shows the
system with open and (b) with periodic boundary conditions.

1.3 Exact Solutions for the 1D Ising Model

The 1D and 2D Ising models can be solved analytically. This section shows two ways to
solve the 1D Ising model with B = 0 and periodic boundary conditions.3 Solving an Ising
model means solving its partition function, which will allow to determine the configurations’
probability distribution.

1.3.1 First Approach: Solution in the Link Representation

The 1D Ising model with periodic boundary conditions contains an equal number of spins and
links, therefore the notation l〈ij〉 can be simplified to li where i refers to the spin to the left of

3These methods could be extended to the inclusion of a magnetic field.
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the link, such that we obtain

H[l] = −


i

li, W [l] = exp


β


i

li


=



i

exp(βli). (1.26)

The periodic boundary condition



i

li = 1, (1.27)

is related to the loop going through the whole system and limits the configurations to physical
ones, ensuring that sn+1 = s1. It can be included in the partition function by adding a Kronecker
delta

δ(


i li),1
= δa[l],1, with a[l] =



i

li. (1.28)

With a[l] ∈ {−1,+1}, the Kronecker delta can be realized as

δa[l],1 =
1

2
(1 + a[l]). (1.29)

The partition function can then be written as

Z = 2


[l]

δa[l],1W [l], (1.30)

and solved as

Z = (


i



li=±1

)(1 +


i

li)


i

exp(βli) = (


i



li=±1

)


(


i

exp(βli) +


i

li exp(βli)



=


i



li=±1

exp(βli) +


i



li=±1

li exp(βli)

=


i

(exp(β) + exp(−β)) +


i

(exp(β)− exp(−β))

= (2 cosh β)n + (2 sinh β)n.

(1.31)

Similarly, the correlation function [3] results in

〈sisj〉 =
1

Z


(2 cosh β)n−|i−j|(2 sinh β)|i−j| + (2 cosh β)|i−j|(2 sinh β)n−|i−j|


, (1.32)

and the susceptibility becomes

χ =
1− (tanh β)n

1 + (tanh β)n
exp(2β). (1.33)

14



1.3.2 Second Approach: Transfer Matrix Method

The transfer matrix method is another way to formulate and solve the partition function of the
1D Ising model with periodic boundary conditions. Its core idea is to replace the summation
over configurations in the partition function by matrix multiplications, such that one can use
linear algebra to solve the partition function by diagonalization.

Let us consider a short segment of a 1D Ising model consisting of two links

si−1 si si+1
. (1.34)

We remain in the spin representation such that the two links relate to local weights w[si−1, si]
and w[si, si+1]. These are the only local weights that depend on the spin si. We can therefore
combine the two weights and the sum over the values of spin si that appears in the partition
function to form a new weight factor that depends on second nearest-neighbor spins

w(2)[si−1, si+1] =


si=±1

w[si−1, si]w[si, si+1]. (1.35)

The term resembles a matrix multiplication

(AB)αγ =


β

AαβBβγ (1.36)

of two matrices A and B. We can define a matrix τ containing the local weights of all combi-
nations of spin values. Its rows correspond to the left spin and its columns to the right spin,
such that

τ =


w[+1,+1] w[+1,−1]
w[−1,+1] w[−1,−1]


⇔ (τ)si,si+1

= w[si, si+1]. (1.37)

We use τ to rewrite equation (1.35) to

w(2)[si−1, si+1] :=


si=±1

τsi−1,siτsi,si+1
= (ττ)si−1,si+1

, (1.38)

where the sum


si=±1 was integrated in the matrix product. We can add another neighboring
spin, e.g. si+2, and iterate the procedure to obtain

w(3)[si−1, si+2] :=


si=±1



si+1=±1

τsi−1,siτsi,si+1
τsi+1,si+2

= (τττ)si−1,si+2
. (1.39)

Another (n−3) iterations of this procedure, when n is the number of spins in the system, yield
the weight

w(n)[s1, sn+1] := (τ . . . τ  
n

)s1,sn+1 = (τn)s1,sn+1 , (1.40)

that includes all configurations at given s1 and sn+1. Implementing the periodic boundary
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conditions through s1 = sn+1 leaves us with the partition function being

Z =


s1=±1

(τn)s1,s1 = Tr τn. (1.41)

where Tr stands for the trace of a matrix.

τ can be diagonalized to obtain the eigenvalues λ0 and λ1

diag(τ) =


λ0 0
0 λ1


=


2 sinh β 0

0 2 cosh β


, (1.42)

such that the partition function is solved as

Z = (2 cosh β)n + (2 sinh β)n. (1.43)

The transfer matrix method is a general and powerful that finds many applications in physics.
It can be used to solve other statistical mechanical models, such as the Potts model [4], but it
is also used in optics, e.g. when working with light rays propagating through a series of lenses
[5]. Onsager managed to solve the 2D Ising model in 1944 [6] using the transfer matrix method.
On the 2D square lattice, he constructed a large transfer matrix such that all configurations of
an entire column were included in a single variable and the transfer matrix then related to two
neighboring columns.

An approach inspired by the transfer matrix method is used in this thesis in Chapter 4 to
formalize cluster-inspired RG in the 1D bond configuration.

1.4 Phase Transitions

In thermodynamics, which has its foundations in statistical physics, phase transitions describe
a drastic change in an infinite system’s characteristics when a particular value of a state variable
is crossed.

A most commonly known example of a phase transition in everyday life is boiling water 4.
Water, like most other substances, can be modelled as a thermodynamical system. It turns
from a liquid to a gas when crossing a temperature of 100◦ C at a pressure of 1 bar, where
temperature and pressure are two state variables causing the density to change in a discrete
way. The density’s first derivative diverges, which classifies the phase transition as first order.
The finite difference in density between liquid and gas is called order parameter. A first order
phase transition is also characterized by a latent heat5 that is absorbed or set free while the
state variable remains constant. In the case of boiling water, a finite amount of heat is absorbed
from the burner while the temperature remains at 100◦ C.

4Of course boiling water is not an infinite system, but it can be approximated such.
5a finite amount of energy per volume
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The liquid/gas phase transition in the thermodynamical model of water forms a continuous
line of temperature and pressure values in the phase diagram, which is displayed in Figure 1.5
(a), while Figure 1.5 (b) shows the behavior of the order parameter. Water e.g. also boils a
temperature of 180◦ C and a pressure of around 10 bar. However, the line ends at a point, the
so-called critical point. Beyond the critical point, only a single phase exists, the so-called high
temperature phase, also referred to as the supercritical fluid phase. Its properties change only
continuously when temperature or pressure are varied.

(a) (b)

Figure 1.5: (a) shows the phase diagram of water [7]. The blue line represents its liquid/gas
phase transition ending in the critical point when temperature and pressure are in-
creased. (b) shows the behavior of the order parameter in the liquid/gas phase tran-
sition, which is the discrete change in density that occurs when the phase changes
between liquid and gas [8]. ρc and Tc symbolize the critical density and temperature.

The ferromagnetic Ising model also has a first order phase transition in its continuum limit
where the lattice spacing goes to zero and the number of sites becomes infinite. It happens at
B = 0. B is its state variable. When it crosses zero, it causes a discrete change in magnetization.

The phase transition of the 1D Ising model does not end in a critical point but continues up to
infinite temperatures.

The phase transitions of the 2D and higher dimensional Ising models do end in critical points.
A phase diagram of a higher dimensional Ising model is displayed in Figure 1.6 (a). The critical
point of the Ising model on the 2D square lattice is found at β = 1

2
ln

1 +

√
2

≈ 0.440687 [9],

whereas that on the 2D triangular lattice is found at β = 1
2
ln
√

3

≈ 0.274653 [10]. The

high-temperature phase above the critical temperature Tc is called disordered phase, while the
two phases below Tc are called ordered phases and relate to equal positive or negative finite
values of magnetization. The order parameter is the absolute value of the magnetization in any
of the two ordered phases. Its behavior is displayed in Figure 1.6 (b).
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(a) (b)

Figure 1.6: (a) shows the phase diagram of a two- or higher-dimensional Ising model [8], where
the first order phase transition line ends in a critical point. Tc symbolized the
critical temperature. The arrows symbolize the option to switch between the two
ordered phases without going through the first order phase transition, by following
a path around the critical point that involves nonzero values of B. (b) shows the
behavior of the order parameter of Ising model phase transition [8], which is the
absolute value of the magnetization in any of the two ordered phases.

As the Ising model at B = 0 obeys spin-flip symmetry, the two ordered phases are energetically
equivalent. When the temperature crosses from a value above Tc to a value below Tc, it
has to choose one of the two ordered phases and the spin-flip symmetry will be broken, as
the magnetization’s expectation value will then differ from zero. This phenomenon is called
spontaneous symmetry breaking.

Critical points are classified as a continuous or higher order phase transitions. The order
parameter is zero and the quantity related to it, which is the magnetization for the Ising
model, is continuous. A divergency occurs only in one of the higher order derivatives of that
quantity. However, at critical points the correlation length diverges and phenomena of arbitrary
high length scales appear in the system.

Universality is an important concept related to phase transitions that allows us to relate the
behavior of different physical models close to criticality. It was found that physical models that
include phase transitions can be classified to universality classes [8, 11].

Two models in the same universality class show universal behavior in the infinitesimal neigh-
borhood of the critical point. Many of their observables can be described by the same critical
exponents. In Ising-type models, the correlation length, the expectation value of the magneti-
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zation and the susceptibility can close to the critical point be described as

ξ ∝ |T − Tc|−ν

〈M〉 ∝ |T − Tc|β

χ ∝ |T − Tc|−γ,

(1.44)

with ν, β and γ being their critical exponents. The thermodynamical model of water with
its liquid/gas phase transition belongs to the same universality class as the Ising model. Its
observables have different physical meanings and yet they share the same critical exponents.
The correlation length relates to that between the molecules, the magnetization corresponds to
the density difference and the susceptibility relates to fluctuations in the density difference.
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2 The Cluster Algorithm

2.1 The Concept of the Cluster Algorithm

2.1.1 The Monte Carlo Method

Monte Carlo is a method to simulate statistical systems numerically. It generates a sample
that approximates the system’s Boltzmann distribution. In case of Ising-type models, a Monte
Carlo sample consists of a sequence of configurations which are generated by a Monte Carlo
algorithm. A new a configuration is generated by modification of a previous one, usually with
the use of random numbers. This type of sequence is called a Markov chain.

Expectation values of observables can be approximated by their mean values over the sample
configurations, as described in equation (1.5). Convergence is ensured if the algorithm obeys
two conditions known as ergodicity and detailed balance.

Ergodicity implies that an algorithm can reach any configuration in a finite number of steps.
Detailed balance is defined as the requirement

W [s]P [s → s′] = W [s′]P [s′ → s], (2.1)

where P [s → s′] is the probability of the algorithm to switch from a configuration s to s′.

To estimate errors of observables mean values, the correlation between consecutive configura-
tions must be considered. These are certainly correlated. Their correlation is transferred to
more distant configurations in time with an exponential decrease. It can be described by the
autocorrelation time τ through

〈O(t)O(t+n)〉 ∝ exp

−n

τ


, (2.2)

where t is a time index relating to an arbitrary configuration in the Markov chain and n is the
number of steps taken to arrive at configuration t+ n.

τ provides a magnitude for the number of steps beyond which the the values of the observable
become largely uncorrelated. It is specific to an observable and a used algorithm and must be
considered in error estimation, described in Section 2.3. A short autocorrelation time implies
a fast convergence, while a long autocorrelation time implies a slow convergence.

The autocorrelation time tends to increase with the correlation length in the system. Near a
critical point, it can be described by a power-law [3]

τ ∝ ξz, (2.3)

where z is called the dynamical critical exponent specific to an algorithm.
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Monte Carlo algorithms do not need to follow a physical real-time dynamics. The cluster
algorithm, for example, may at low temperatures flip large parts of the entire system at once.
This would never happen in real-time in a physical system approximated by the Ising model
such as a magnet, but it is legitimate to happen in a Monte Carlo simulation as long as it obeys
detailed balance.

2.1.2 The Metropolis Algorithm

The Metropolis algorithm is a simple algorithm that flips a single spin at a time. It chooses a
spin at random, compares the Boltzmann weight of the current configuration with that of the
potentially new one and accepts the flip with a probability that obeys detailed balance. If it
does, the new configuration is added to the Markov chain.

The Metropolis algorithm suffers from long autocorrelation times when the correlation length
becomes large. Spins are then likely to be surrounded mostly by parallel spins and the Boltz-
mann weight of a potentially new configuration will in most cases be lower. The algorithm then
hesitates to flip spins and its dynamics slows down. This manifests itself in two phenomena,
called critical slowing down and topological freezing.

Critical slowing down [12] arises near the critical point where the correlation length becomes
large. The dynamical critical exponent z was found to be around 2 by numerical evidence [3],
implying that the autocorrelation time τ increases with the second power of the correlation
length. In case of a finite system, the correlation length does not become infinite at the
critical point but approaches the size of the system. Therefore, the dynamics of the Metropolis
algorithm slows down with increasing system size at the critical point.

Topological freezing [13], also-called supercritical slowing down, occurs in the low temperature
regime, where the system chooses one of the two ordered phases by spontaneous symmetry
breaking. These phases of positive or negative magnetization can be regarded as topological
sectors in the continuum limit. Once a phase is chosen, the system has no chance to escape
from it and enter the other one. On a finite lattice system, that probability decreases exponen-
tially with the number of spins, while the autocorrelation time increases exponentially and the
performance of the algorithm breaks down.

2.1.3 The Cluster Algorithm

The cluster algorithm can flip multiple spins at a time. It does this by grouping the spins to
clusters and then flipping clusters as a whole. This way, it is able to avoid the issues of critical
slowing down and topological freezing.

In fact, numerical studies have found no significant deviation of the dynamical critical exponent
from zero [3]. Achieving this characteristic requires the cluster algorithm to flip large areas
of parallel spins simultaneously. The effective performance of the cluster algorithm at large
correlation lengths depends on satisfying two conditions, which we term cluster logic:

1. Clusters only contain parallel spins.
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2. Clusters may flip freely, independent of other clusters’ orientations.

To introduce the cluster algorithm, we introduce additional variables known as bond variables,
which enable neighboring spins to form bonds with each other. These bonds automatically
partition the lattice into disjoint sets of bonded spins called clusters. A cluster originates at a
given spin and includes all spins bonded to it.

Bond variables are denoted as b〈ij〉, where i and j are neighboring lattice sites. We define
an activated bond as b〈ij〉 = 1, meaning spins si and sj belong to the same cluster, and a
deactivated bond as b〈ij〉 = 0, which does not necessarily imply the two spins are in different
clusters. Spins si and sj may still belong to the same cluster if connected via a series of activated
bonds passing through other sites. This allows any two spins in the system to be bonded and
belong to the same cluster.

While bonds can be defined as local variables between neighboring spins, the formation of
clusters and the question of whether two distant spins are bonded are global issues that cannot
generally be reduced to a local description. Clusters can be very large or consist of just a single
spin. Figure 2.1 illustrates a section of a 2D square lattice Ising-type system with spins and
bonds.

(1)

(2)

Figure 2.1: Illustration of a section of a 2D square lattice Ising-type system with spins and
bonds. Red dots are up spins, green dots are down spins and orange lines are
activated bonds. The two highlighted regions symbolize clusters, (1) consisting of
seven spins, and (2) consisting of a single spin.

When introducing bonds as artificial variables, we must ensure that they do not alter the
physics of the system. With bonds, we will introduce new weights that are functions of both
the spins and the bonds. It is essential to ensure that the original weights, which are functions
only of the spins, can be reproduced by summing the new weights over all possible bond states.
Locally, this means

w[si, sj] =


b〈ij〉=±1

w[si, sj, b〈ij〉], (2.4)

where w[si, sj] is the original local weight as a function of the spins, and w[si, sj, b〈ij〉] is the new
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weight as a function of the spins and bonds, which needs to be defined in a way that satisfies
the cluster logic.

The first condition of cluster logic can be fulfilled by ensuring that bonds are only activated
between parallel spins. This is achieved by setting the weight of an activated bond to zero if
the spins are anti-parallel.

The second condition of cluster logic is fulfilled if the weights resulting from the boundaries of
the cluster remain invariant under cluster flipping. This condition can be satisfied by requiring
that the weight of a deactivated bond is the same for both parallel and anti-parallel spins. A
cluster is by definition surrounded by a boundary of deactivated bonds. Therefore, if the weight
of a deactivated bond is the same for both parallel and anti-parallel spins, the weight of the
boundary will remain unchanged.

With these conditions, the local Boltzmann weights as functions of the spin and bond configu-
rations are uniquely defined to be

w[sisj = +1, b〈ij〉 = 1] = eβ − e−β := w1,

w[sisj = +1, b〈ij〉 = 0] = e−β := w0,

w[sisj = −1, b〈ij〉 = 1] = 0,

w[sisj = −1, b〈ij〉 = 0] = e−β = w0.

(2.5)

or

w[si, sj, b〈ij〉] = δb〈ij〉,0w0 + δsi,sjδb〈ij〉,1w1. (2.6)

This construction not only satisfies cluster logic but also allows for almost complete freedom in
flipping clusters. Due to spin-flip symmetry, the Boltzmann weight remains unchanged when
a cluster is flipped. Consequently, the condition of detailed balance is reduced to the simple
requirement that clusters must be flipped with spin-flip symmetric probabilities.

The description of the Ising model with spin and bond variables is called the cluster represen-
tation. The cluster algorithm begins with an initial spin configuration, sets bonds according to
the defined weights, and then determines which clusters to flip based on the specific version of
the cluster algorithm, resulting in a new spin configuration. The bonds are then deleted, the
spin configuration is added to the sample and the algorithm proceeds to the next step.

2.1.4 The Bond Representation of the Ising Model and its Solution in
the 1D

We now aim to find the Boltzmann weights of bond configurations without specifying the
spins, assuming that the spins follow their Boltzmann distribution. This requires summing
over all spin configurations for a given bond configuration, a process called integrating out the
spins. This is analogous to the condition implied in equation 2.4 when we introduced bonds as
additional variables to the spins. There, transitioning from spins and bonds to only spins meant
integrating out the bonds. Here, we want to retain only the bonds. However, the spins cannot
be integrated out locally because their freedom to flip is constrained by the clusters, which are
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non-local objects. Therefore, we need to reconsider the cluster logic and its implications for a
bond configuration:

• An activated bond corresponds to the weight w1.

• A deactivated bond corresponds to the weight w0.

• Clusters can flip as a whole to yield the same bond configuration again. Therefore, each
cluster increases the weight of a bond configuration by a factor of 2.

From these arguments follows the weight of a bond configuration as

W [b] = 2#Cl[b]


〈ij〉

(δb〈ij〉,0w0 + δb〈ij〉,1w1). (2.7)

where #Cl[b] is the number of clusters in the bond configuration. The related partition function

Z =


[b]

2#Cl[b]


〈ij〉

(δb〈ij〉,0w0 + δb〈ij〉,1w1) (2.8)

is hard to solve analytically due to the non-local character of #Cl[b]. In 1D, however, the Ising
model can actually be solved. This is feasible because in 1D, each deactivated bond (except the
first one in the case of periodic boundary conditions) creates an additional cluster. Therefore,
the number of clusters can be expressed as an analytical function of the bond configuration.

In the case of open boundary conditions, the number of clusters is equal to 1 plus the number
of deactivated bonds. Therefore, all factors of 2 beyond the first one may be attributed to the
local weight of a deactivated bond w0. The Boltzmann weight then is

W [b] = 2#Cl[b]


〈ij〉

(δb〈ij〉,0w0 + δb〈ij〉,1w1)

= 21+#(b=0)[b]

n−1

i=1

(δbi,0w0 + δbi,1w1) = 2
n−1

i=1

(2δbi,0w0 + δbi,1w1),

(2.9)

and the partition function is

Z =


[b]

2
n−1

i=1

(2δbi,0w0 + δbi,1w1) = 2
n−1

i=1



bi=0,1

((2δbi,0w0 + δbi,1w1)) (2.10)

= 2
n−1

i=1

((2w0 + w1)) = 2 ((2w0 + w1))
n−1 . (2.11)

In the case of periodic boundary conditions, things are slightly more complicated due to the
appearance of a loop in the system. Because of this loop, a configuration with all bonds activated
and a configuration with one deactivated bond both yield a single cluster, as illustrated in Figure
2.2. Starting from the second deactivated bond, however, each additional one again corresponds
to an additional cluster, and factors of 2 can again be attributed to deactivated bonds. Thus,
the partition function can be derived as the sum of all weights with one or more deactivated
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s1 s2 si−1 si si+1 sn−1 snsn s1. . . . . .
(a)

s1 s2 si−1 si si+1 sn−1 snsn s1. . . . . .
(b)

Figure 2.2: Illustration of two 1D bond configurations (a) and (b) with periodic boundary
conditions, both yielding a single cluster.

bonds, which can be simplified similarly to the open boundary case, plus a single configuration
with all bonds activated. It is

Z = ((2w0 + w1))
n + wn

1 . (2.12)

2.2 Numerical Results: The Cluster Algorithm for the 2D
Ising Model

To become familiar with the cluster algorithm, a version of it called Swendsen-Wang cluster
algorithm [14] was implemented on the square lattice. It flips all clusters with a 50% probability.
Its implementation was veryfied using tabulated results of the susceptibility [15] on the 100×100
lattice.

Figures 2.3, 2.4 and 2.5 each show sequential 2D sample configurations generated using the
Swendsen-Wang cluster algorithm at three different values of β. Each plot combines spin and
bond data: the spin lattice is color-coded with red and green representing up and down spins,
respectively. The bond lattice, displayed between spin pairs, is marked in dark brown for
activated bonds, while deactivated bonds and empty spaces are marked in light grey. These
plots provide an intuitive understanding of the cluster algorithm by comparing consecutive
configurations.

Figure 2.3 shows plots generated at low temperature β = 2 on a 100× 100 lattice starting from
a random configuration. Initially, small cluster sizes are occur in the transient phase. However,
due to the low temperature, spins tend to align, and the system quickly reaches majority align-
ment. Consequently, spins can form large clusters capable of flipping as a whole, transitioning
between positive and negative ordered phases. In contrast, the Metropolis algorithm would
typically suffer from topological freezing and remain in one phase.

Figure 2.4 displays plots generated at the critical temperature β = βcrit on a 200 × 200, after
omitting a sufficiently long transient phase. The lattice was chosen to be sufficiently large to
enhance visibility of the emerging large-scale clusters. At the critical point, clusters appear
across various length scales observable on the lattice.

Figure 2.5 illustrates plots generated at high temperature β = 0.1 on a 100 × 100 lattice,
starting from a random configuration. At such high temperatures, all Boltzmann weights are
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similar, resulting in spins behaving almost randomly. As a result, the transient phase does
not prominently stand out. The bond activation probability is very low, leading to spins
predominantly forming single-spin clusters, represented dominantly by a light grey color across
the lattice.

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 2.3: Sequential plots of 2D sample configurations generated using the Swendsen-Wang
cluster algorithm at low temperature β = 2 on a 100× 100 lattice, starting from a
random configuration.
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 2.4: Sequential plots of 2D sample configurations generated using the Swendsen-Wang
cluster algorithm at critical temperature β = βcrit on a 200 × 200 lattice after
omission of the transient phase.
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 2.5: Sequential plots of 2D sample configurations generated using the Swendsen-Wang
cluster algorithm at high temperature β = 0.1 on a 100× 100 lattice, starting from
a random configuration.
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2.3 Error Analysis of Monte Carlo Data

A Monte Carlo simulation generates a sample that converges towards the Boltzmann distribu-
tion, such that mean values of observables converge towards their expectation values. However,
as in any statistical model, there exists a deviation between the mean value of an observable in
the sample and its expectation value, referred to as the error. Estimating this error is crucial
for assessing the reliability of the results.

2.3.1 Error Estimation of Uncorrelated Data

In the case of uncorrelated data, one may estimate the error of a mean value using the standard
error, defined as

σŌ =
σO√
ns

, (2.13)

where σO is the standard deviation of the observable O and ns is the sample size. The error
decreases with sample size, suggesting that increasing the sample size can reduce the error if
computational time permits.

Alternatively, one may estimate the mean value’s error using the bootstrap method, which relies
on resampling. This method involves generating a number of random bootstrap samples from
the original sample’s distribution, each of the same size as the actual sample. The mean value
of the observable is computed for each bootstrap sample, and the error of the mean value is
estimated based on their standard deviation [16]. Bootstrap assumes that the sample size is
sufficiently large for its distribution to be representative of the entire system. This assumption
can be verified, for example, by varying the sample size and comparing the results, generating
new bootstrap samples of equal size as the original ones.

Both methods were used here to estimate the error of the mean value, with their outcomes
generally similar, although the estimated errors from the bootstrap method tended to be slightly
larger.

2.3.2 Binning

Monte Carlo algorithms typically generate correlated data, as configurations are sequentially
generated from previous ones. The sequential correlation of an observable can be quantified by
its autocorrelation time τ .

Binning is a method used to accurately estimate the error of sequentially correlated data by
reducing the number of data points to obtain a smaller, uncorrelated dataset. This process
involves grouping consecutive data points into bins of equal size, computing the average within
each bin to create new, coarser data points that are less correlated. As the bin size increases
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relative to the autocorrelation time of the observable, the data points generated become in-
creasingly uncorrelated.

Determining the appropriate bin size does not necessarily require knowing the autocorrelation
time. Instead, one can analyze the behavior of the estimated error. Positive correlations result
in an underestimation of the error, as correlated data points are more similar to each other than
randomly chosen points would be. Increasing the bin size decreases the correlation, causing the
estimated error to increase. Once the data become effectively uncorrelated, the estimated error
becomes realistic and reaches a plateau. This plateau appears as a flat region in the curve, and
its visibility increases when plotting the estimated error against the logarithmic bin size.

Further increasing the bin size beyond this point does not increase the estimated error further.
Instead, it remains roughly constant. Conversely, increasing the bin size excessively will reduce
the number of bins until the statistical validity of the error estimate is lost. Therefore, the
most accurate error estimate is typically taken from the plateau region. Figure 2.6 shows an
exemplary plot of an estimated error of a variable against the bin size.

Figure 2.6: Plot showing the estimated error of the upcount variable, which counts the number
of renormalized configurations with all spins up, generated by a cluster algorithm
on a small renormalized triangular lattice (described in Chapter 5). Each binning
step combines two bins into one, effectively doubling the bin size. The number of
binning steps shown on the x-axis corresponds to log2 of the bin size. In this plot,
the error estimate is approximately 400 counts, whereas the biased error estimate
of the correlated data would have been around 250 counts.

2.3.3 The Transient Phase

Monte Carlo simulations encounter the issue of a transient phase, an initial period where
errors induced by the choice of the initial configuration can affect observables. This phase
is observable-specific and can be mitigated by discarding data from the initial configurations
until the system reaches a steady state. The number of initial configurations to discard can be
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determined by plotting and visually inspecting the observable’s values. Figure ?? illustrates
the behavior of the energy density at the beginning of a Monte Carlo simulation, highlighting
the transient phase.

Figure 2.7: Initial values of the energy density in a sample generated by the Swendsen-Wang
cluster algorithm on a 100 × 100 square lattice at β = βcrit. The visible transient
phase persists for approximately 20 simulation steps.
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3 Cluster-Inspired RG

3.1 Renormalization Group Theory

The Renormalization Group (RG) is a concept that modifies a theory to emphasize its long-
range phenomena [1]. This is achieved by eliminating short-range degrees of freedom while pre-
serving long-range information. By removing dominant short-range effects that might obscure
long-range phenomena, the renormalized theory reveals the underlying long-range behavior.

Kadanoff was the first to apply the concept of RG within classical statistical mechanics, par-
ticularly to Ising-type lattice models [11]. He introduced it through a blocking transformation,
a process of coarse-graining on the lattice. This transformation groups lattice sites into blocks,
creating new, coarser lattice sites in a renormalized system. New variables of the same type as
the originals are defined on these blocks, replacing the original variables and absorbing some
of their information. Despite losing some information as the lattice coarsens and the number
of variables decreases, RG ensures that long-range phenomena persist through the transferred
information. The blocking process can be iterated to further coarsen the lattice, hence the
term ’renormalization group,’ although mathematically it forms a semi-group since there is no
inverse blocking transformation.

An intuitive analogy of RG on a lattice can be reducing the resolution of a picture. Although a
picture lacks physical interactions, it may contain information about patterns at different length
scales. Coarse-graining a picture results in the loss of short-range patterns, while long-range
patterns remain visible. There is a type of optical illusions that include a dominant short-range
pattern obscuring a weaker long-range pattern. This optical illusions may help to provide an
intuitive understanding of RG. As resolution decreases and pixels are averaged, the short-range
pattern vanishes, revealing the underlying long-range pattern. An example of such an optical
illusion is provided in Figure 3.1.
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(a) (b)

Figure 3.1: (a) shows an optical illusion with a hidden number 20. The strong contrast of short-
range patterns formed by blue and yellow lines obscures the subtler and longer-range
phenomenon of hidden number 20. By intentionally defocusing one’s eyes to see the
picture blurry, the number 20 may become visible. (b) provides an enlarged view
of the optical illusion at a much lower resolution, where pixels have been integrated
out. The short-range patterns formed by the blue and yellow lines have largely
disappeared, leaving the number 20 as the dominant long-range pattern.

Kadanoff introduced RG blocking transformations as a method to identify critical points in
Ising-type lattice models [11, 17]. In this approach, the lattice resolution is systematically
reduced, leading to an increase in lattice spacing. Subsequently, the renormalized lattice is
rescaled to restore the original lattice spacing. This process diminishes the correlation length
and reduces the range of long-range phenomena in the system. Systems not at the critical point
experience a decrease in correlation length with each blocking iteration, eventually converging
to zero. Conversely, systems at the critical point are characterized by an infinite correlation
length that persists through RG transformations, thereby remaining on the critical surface.

Wilson formalized RG theory and significantly advanced its understanding, along with the
concept of universality [18, 19, 20, 21]. On a critical surface, RG theory identifies points of
attraction known as fixed points. A theory at a fixed point remains invariant under RG transfor-
mations, exhibiting scale-invariance. This implies that physical properties remain unchanged
when observed at different length scales. The basin of attraction of a fixed point on the criti-
cal surface defines a universality class of theories. Theories within the same universality class
display identical critical behavior and share common critical exponents, irrespective of their
microscopic details.

Wilson’s work not only provided a deeper theoretical framework for understanding critical
phenomena but also highlighted the profound idea that diverse physical systems can exhibit
identical behavior near critical points, a concept now fundamental to the study of phase tran-
sitions and critical phenomena.
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3.2 RG Blocking

The local character of an RG blocking transformation ensures that the renormalized system
remains local. Multiple original spins are grouped into blocks of uniform size and shape that
cover the entire lattice. The spins are then integrated out to form fewer renormalized spins on
a coarser lattice. Each renormalized spin is determined by the spins within its block as well as
by random numbers. An RG blocking transformation is characterized by a mathematical entity
known as the blocking kernel T [s, s′], which specifies the weight of a renormalized configuration
s′ given an original configuration s. The combination of the original lattice and the renormalized
lattice is collectively referred to as the multigrid, illustrated in Figure 3.2. The blocking kernel
can be transformed into a probability by requiring



s′

T [s, s′] = 1 ⇔ T [s, s′] = P (s′|s). (3.1)

Local blocking implies that the blocking kernel is a local object

T [s, s′] =


□
t[s□, s

′
□], (3.2)

where the factor t[s□, s
′
□] is called a local blocking kernel. □ refers to a specific block in the

system and


□ sums over all blocks. s′□ refers to the renormalized block spin and s□ is an
abbreviation for the set of all original block spins. The local blocking kernel t[s□, s

′
□] depends

on the renormalized block spin s′□ and the set of original block spins s□. It forms the local
weight of the renormalized spin s′□ for a given original block configuration s□.

The translational symmetry of lattices implies that each local blocking kernel should individu-
ally fulfil



s′□

t[s□, s
′
□] = 1, (3.3)

and therefore also the local blocking kernel can be interpreted as a local probability

t[s□, s
′
□] = P (s′□|s□). (3.4)

The weight of a given multigrid configuration consists of the weight of the original configuration
times the blocking kernel

T [s, s′]W [s]. (3.5)

We would, however, like to know the weight of the renormalized configuration independently
of the original configuration. It follows from integrating out the original configurations, as

W ′[s′] =


[s]

T [s, s′]W [s]. (3.6)
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original system s

blocking kernel T[s,s’]

renormalized system s′

(a)

s□1

s□2 s□3

s□4

s′□

t[s□, s
′
□]

(b)

Figure 3.2: Schematic illustration of an RG blocking transformation on the 2D square lattice,
where (a) shows a section of the multigrid and (b) shows a single square-shaped
block.

The renormalized weights W ′[s′] = exp(−βH′[s′]) then implicitely determine the renormalized
Hamilton function H ′[s′]. The renormalized partition function is equal to the original one if
the blocking kernel is defined as a probability, as was done in equation (3.1). Then we obtain

Z ′ =


[s′]

exp(−βH ′[s′])

=


[s]



[s′]

T [s, s′] exp(−βH[s])

=


[s]

exp(−βH[s]) = Z.

(3.7)
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3.3 Cluster-inspired RG

The core idea of this project was to develop and perform RG in a new way that allows to
apply the cluster algorithm to a renormalized system. We call this concept cluster-inspired
RG transformation or short cluster-inspired RG. The idea behind it is to pass the concept of
clusters from the original system to the renormalized system, which will then have different
interactions but still consist of clusters.

Before starting this project in form of multiple master theses, Prof. U.J. Wiese had already
found a scheme for a cluster-inspired RG transformation, which formed the starting point of this
project. The scheme can easily be iterated and allows to numerically simulate the renormalized
system with the Monte Carlo cluster algorithm.

The cluster-inspired RG transformation is introduced in this section. Even if some illustrations
are in 1D or in 2D, the concept in principle works for any dimension.

3.3.1 The First Blocking Step

We start operating in the cluster representation and introduce the cluster-inspired RG trans-
formation via a blocking kernel. We denote the cluster-inspired blocking kernel as tcluster and to
define it, we introduce another variable type, so-called kernel bonds, which we denote bkernel. We
define kernel bonds such that they allow renormalized spins to bond to original spins. Kernel
bonds will then translate original clusters to renormalized clusters. They may put renormalized
spins into the same cluster by adding them to the same original cluster. An illustration on the
concept of kernel bonds is given in Figure 3.3.

s′i

s′j

s′k

Figure 3.3: Illustration of the logical concept of cluster-inspired RG on a 2D square lattice. Red
lines are activated original bonds, orange lines are activated kernel bonds, and all
uncoloured lines are deactivated bonds. In this exemplary configuration, s′i and s′j
belong to the same renormalized cluster, while s′k does not.

36



We want to specify the blocking kernel as the weights related to the kernel bonds. In order to
later be able to apply the cluster algorithm to the renormalized system we must insure that
the kernel bonds respect cluster logic, introduced in Section 2.1.3.

Cluster logic implies that clusters can only contain parallel spins and that different clusters
must have the freedom to flip independently.

The first condition implies that a renormalized spin can only be bonded to an original spin if
the two are parallel. And when an original spin flips, a bonded renormalized spin must flip as
well. This further implies that we should define the kernel bonds such that a renormalized spin
can only bond to a single original spin. If we did not, and the kernel bond could be bonded to
multiple original spins at once, this would immediately lead to contradictions. A renormalized
spin that was bonded to two original spins at the same time, which are not part of the same
original cluster, could not obey cluster logic if one of the original spins flipped while the other
kept its orientation. If the two original spins were in the same cluster instead, bonding to both
would not differ from bonding to just one of them. Therefore, kernel bonds may only bond a
renormalized spin to a single original spin it its block.

The second condition is fulfilled, if we demand again that the probability of deactivating a
bond is independent of the spins’ orientations, such that the overall Boltzmann weight does
not change when a cluster is flipped.

The blocking kernel should also respect the lattice symmetries, thus we can further demand
that the weight of activating a bond should not depend on the location of the original spin in
the block. Thus, we can define the blocking kernel to take only two distinct values related to
an activated and a deactivated kernel bond. We define a as the weight of a deactivated kernel
bond and c as the weight of an activated kernel bond if the bonded spins are parallel.

And finally, the new cluster-inspired blocking kernel should be consistent with the original one
acting in the spin representation. We therefore require

t[s□, s
′
□] =



bkernel□

tcluster(s□, s
′
□, b

kernel
□ ).

(3.8)

We now consider a block configuration where all original spins are up. The probabilities of
the renormalized spin to be up or down at any given configuration of the original block spins
are embodied by the local blocking kernel in the spin representation t[s□, s

′
□]. We denote the

weight of it to be down as A and that of it to be up as 1− A, such that the two sum up to 1.
A is an unspecified parameter that takes values between 0 and 1 and will later be identified as
a tuning parameter of the RG transformation.

From our construction, we obtain the equations

A = a,

1− A = a+ n□c,
(3.9)
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from which follow

a = A,

c =
1− 2A

n□
.

(3.10)

These reduce the domain of A to [0, 1
2
]. If we now define the values of the kernel bond as

bkernel□ = 0 for no activated bond and bkernel□ = 1 for an activated bond to any one of the original
spins, the cluster-inspired blocking kernel is specified as

tcluster(s□, s
′
□, b

kernel
□ ) = δbkernel□ ,0a+ δbkernel□ ,1



i∈□
δsi,s′□c

= δbkernel□ ,0A+ δbkernel□ ,1



i∈□
δsi,s′□

1− 2A

n□
,

(3.11)

with δα,β the Kronecker delta, where δsi,s′□ checks whether the original spin si and the renor-

malized spin s′□ are parallel and δbkernel□ ,i checks whether b
kernel
□ was set to i.

If we alternatively define the values of the kernel bond as b̃kernel□ = 0 for no activated bond
and to b̃kernel□ = i for an activated bond to the original spin si within the block, then also its
block-internal location is defined by its value. This version of the kernel bond can be useful for
its implementation in a programming algorithm. In this case, the blocking kernel is specified
as

tcluster(s□, s
′
□, b̃

kernel
□ ) = δb̃kernel□ ,0a+



i∈□
δb̃kernel□ ,iδsi,s′□c

= δb̃kernel□ ,0A+


i∈□
δb̃kernel□ ,iδsi,s′□

1− 2A

n□
.

(3.12)

The results can be illustrated as follows:

s□1
. . . s□i

. . . s□n□

s′□

s□1
. . . s□i

. . . s□n□

s′□
bkernel□ :

b̃kernel□ :

0

0

1

□i

tcluster : A δs□i
,s′□

1−2A
n□

.

(3.13)

The case of A = 0 implies that each renormalized spin will certainly be bonded to an original
spin. A positive value of A allows a renormalized spin to remain unbonded with a certain
probability, such that it can flip freely, regardless of the original bond configuration. The limit
of A = 1

2
then corresponds to the trivial RG transformation where all renormalized spins remain

unbonded and no information is passed from the original to the renormalized system, such that
the renormalized system will become random.
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3.3.2 Multiple Blocking Steps

The cluster-inspired blocking kernel can indeed be extended nicely to a relatively simple form
describing multiple blocking steps at once.

A single blocking step partitions the original system into blocks of n□ original sites. Multiple
blocking steps do this repeatedly. The renormalized system becomes more and more coarse and
each renormalized spin relates to larger and larger blocks, that we call block sectors. After a
number nr of blocking steps, the block sectors have a size of nnr

□ sites. One can imagine each
blocking step to generate a new layer of the multigrid in between the original and the final
renormalized system. Kernel bonds exist between any two layers of the multigrid. Starting at
a renormalized spin, a series of kernel bonds makes its way through the layers of the multigrid
until it may or may not reach the original system. If it does, the renormalized spin is bonded
to a particular original spin and added to its cluster, just like after a single blocking step.

For positive values of A, the probability that a renormalized spin remains unbonded increases
with the number of blocking steps, as in this case, there is a non-zero probability to discontinue
the series of bonds added in each additional blocking step. In the case of A = 0, series of
bonds are certain to continue all the way to the original system and each renormalized spin is
certainly bonded to an original spin.

The block sectors that are formed by the iterated blocking are disjoint sets that contain all
original spins that a particular renormalized spin can bond to. The bonding happens again
with an equal probability for each original spin that is parallel to the renormalized spin, as each
layer in the multigrid obeys the lattice symmetries.

We now derive the blocking kernel that describes multiple blocking steps at once. We do so by
iterating the blocking kernel of a single blocking step, found in equation (3.11). Since we only
care about the original and the renormalized systems and not about the in-between layers, we
integrate these out by summing over all configurations of these layers and adding up the kernel
weights. This procedure is simplified by the fact that each original spin may only be bonded to
the renormalized spin of its own block sector by one particular path of activated kernel bonds.
We thus want to know the weight that this particular series of bonds is activated. We denote
the spins in the original system sio , those in the final renormalized system s′ir and those in the
intermediate layers sαiα , with α the number of blocking steps taken to reach that layer. io, ir, iα
are the lattice sites of the spins in their system. We obtain the probability for a bond between
sio and s′ir by



s
(1)
i1

=±1



s
(2)
i2

=±1



s
(3)
i3

=±1

· · ·


s
(nr−1)
inr−1

=±1

(δ
sio ,s

(1)
i1

c)(δ
s
(1)
i1

,s
(2)
i2

c)(δ
s
(2)
i2

,s
(3)
i3

c) . . . (δ
s
(nr−1)
inr−1

,s′ir
c)

= cnr


s
(1)
i1

=±1



s
(2)
i2

=±1



s
(3)
i3

=±1

· · ·


s
(nr−1)
inr−1

=±1

δ
sio ,s

(1)
i1

δ
s
(1)
i1

,s
(2)
i2

δ
s
(2)
i2

,s
(3)
i3

. . . δ
s
(nr−1)
inr−1

,s′ir

= cnrδsio ,s′ir ,

(3.14)
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where we used that



sβ=±1

δsα,sβδsβ ,sγ = δsα,sγ , (3.15)

and assumed that sio is in the block sector of sir and all sites iα in equation (3.14) are exactly
the ones on the kernel bond path between sio and sir . This procedure is illustrated in Figure
3.4.

Original sys-
tem s

s(2)

s(1)

s(nr−2)

s(nr−1)

Renormalized
system s′

sio

s′ir

...
...

...
...

kernel
bond
path

Figure 3.4: Simplified illustration of a multigrid after a number nr of blocking steps, showing a
series of bonds that bonds a renormalized spin s′ir to an original spin sio in its block
sector.

The reason why we did not have to include any kernel weights of blocks, nor sums over spins,
that are not on the kernel bond path, is because we normalized the local blocking kernel to
form a probability, such that



s′□

t[s□, s
′
□] =



s′□,bkernel□

tcluster[s□, s
′
□, b

kernel
□ ] = 1. (3.16)

If we included all local blocking kernels and all sums that are not on the kernel bond path,
then these would all simplify to factors of 1. Therefore, we can indeed neglect them.

To determine the blocking kernel of multiple blocking steps, we can look at a block sector
configuration with all original spins up again, as we already did in the single blocking step. We
denote the probability that the renormalized spin is down as A(nr) and the probability that it
is up as 1−A(nr). We denote the weight that the renormalized spin remains unbonded as a(nr).
The weight that it is bonded to any one of the original spins in its block sector is cnr if they
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are parallel, with c = 1−2A
n□

. We obtain the equations

A(nr) = a(nr), 1− A(nr) = a(nr) + nnr
□ cnr . (3.17)

From these follow

a(nr) = A(nr) =
1− (n□c)

nr

2
=

1− (1− 2A)nr

2
, (3.18)

and

cnr =


1− 2A

n□

nr

=
(1− 2A)nr

nnr
□

. (3.19)

We now introduce an overall kernel bond that summarises the kernel bonds of all the nr blocking
steps as bkernel□(nr)

. We define its values as it as bkernel□(nr)
= 0 if the renormalized spin s′□(nr)

remains

unbonded and bkernel□(nr)
= 1 if it is bonded to an original spin in the block sector □(nr). We can

then generalize the blocking kernel to relate to all the nr blocking steps at once, as

t
(nr)
cluster(s□(nr) , s

′
□(nr) , b

kernel
□(nr) ) = δbkernel

□(nr)
,0a

(nr) + δbkernel
□(nr)

,1



i∈□(nr)

δsi,s′□(nr)
cnr

= δbkernel
□(nr)

,0

1− (1− 2A)nr

2
+ δbkernel

□(nr)
,1



i∈□(nr)

δsi,s′□(nr)

(1− 2A)nr

nnr
□

,

(3.20)

where 1−(1−2A)nr

2
is the weight to leave the renormalized spin unbonded and (1−2A)nr

nnr
□

is the

weight to set a bond between the renormalized spin and any one of the block sector spins if the
two are parallel.

The found results provide a method to simulate a renormalized system by means of the cluster
algorithm. We therefore start with initial original and renormalized spin configurations. We
set the original bonds and the kernel bonds according to the found rules, such that bonded
renormalized spins become part of the original cluster, and unbonded renormalized spins form
their own single-spin cluster. We may then flip the clusters in a spin-flip symmetric way as we
like to obtain a new original and renormalized configuration. When this is done repeatedly, the
frequency of each renormalized configuration will converge to be proportional to its Boltzmann
weight. This then allows, in principle, to determine of the renormalized Hamilton function,
even if the way to do so needs to be further specified. This method is further specified and
used in Chapter 5.

The derivation could be extended to choosing individual values of the tuning parameter A for
each blocking step. The procedure would work analogously, with the difference that A would
have to be replaced by a set of tuning parameters [A] = [Ai, . . . , Anr ], where Ak is the tuning
parameter of the k-th blocking step. Also the weight c would have to be replaced by weights
ck, such that

ck =
1− 2Ak

n□
. (3.21)
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Instead of cnr , one would obtain

c(nr) =
nr

k=1

ck =

nr

k=1(1− 2Ak)

nnr
□

, (3.22)

and a(nr) would turn to

a(nr) = A(nr) =
1−

nr

k=1(1− 2Ak)

2
. (3.23)

The more general form of the local blocking kernel written as a function of the set of tuning
parameters [A] would turn to

t
(nr)
cluster(s□(nr) , s

′
□(nr) , b

kernel
□(nr) , [A]) = δbkernel

□(nr)
,0a

(nr) + δbkernel
□(nr)

,1



i∈□(nr)

δsi,s′□(nr)
c(nr)

= δbkernel
□(nr)

,0

1−
nr

k=1(1− 2Ak)

2

+ δbkernel
□(nr)

,1



i∈□(nr)
i

δsi,s′□(nr)

nr

k=1(1− 2Ak)

nnr
□

.

(3.24)

One could, if necessary, also generalize the blocking kernel even further and vary block sizes in
each step. Then also n□ would need to be labelled with a blocking step index k. However, this
was not seen as particularly useful for the purposes here.
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4 1D Analytical Cluster-Inspired RG

The first part of this project after a general introduction towards cluster-inspired RG was the
attempt to analytically solve it in 1D. The idea was to get started with the simplest case and
try to progress analytically to either successfully solve it or at least get to know the limits of
an analytical approach.

4.1 General 1D RG Ansatz

Before approaching cluster-inspired RG, we started with a general 1D RG transformation acting
in the spin representation. We found a general form of a blocking kernel with blocks consisting
of two original spins that are transformed to one renormalized spin as illustrated in Figure 4.1.
While the original system is assumed as an Ising system with B = 0, the renormalized system
has a priori unknown interactions.

original sys-
tem

renormalized
system

blocking kernel

block i− 1 block i block i+ 1

s2i

s′i

s2i+1

block i

w(s2j, s2j+1)

t(s2j, s2j+1, s
′
i)

Figure 4.1: Illustration of a single blocking step. The green lines represent the original sys-
tem, the blue lines represent the blocking kernel and the orange lines represent the
renormalized system.

The local blocking kernel is defined as a probability by



s′i

t(s2i, s2i+1, s
′
i) = 1 ⇔ t(s2i, s2i+1, s

′
i) = P [s′i|s2i, s2i+1]. (4.1)

The degrees of freedom of such a blocking kernel are few. The 1D lattice’s parity symmetry and
the Ising model’s spin-flip symmetry constrain the blocking kernel and leave only one degree
of freedom to its definition. The resulting parameter can be identified as the same parameter
A that we already encountered in Section 3.3 when performing cluster-inspired RG in general
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dimensions. The blocking kernel takes the values

↑

↑

↑ ↑

↓

↑

spin-flip
symmetry

↓

↓

↓ ↓

↑

↓

s2i, s2i+1, s
′
i :

t : 1− A A 1− A A,

↑

↑

↓ ↓

↑

↑

spin-flip
symmetry

parity
symmetry

parity
symmetry

↓

↓

↑ ↑

↓

↓

s2i, s2i+1, s
′
i :

t : 1
2

1
2

1
2

1
2
,

(4.2)

or formulated as an equation

t(s2i, s2i+1, s
′
i) = (1− A)δs2i,s2i+1

δs2i,s′i + Aδs2i,s2i+1
(1− δs2i,s′i) +

1

2
(1− δs2i,s2i+1

). (4.3)

4.2 1D Ising-Interaction-Preserving RG Ansatz

After constructing a general 1D blocking kernel, we wanted to find an RG transformation that
allowed to preserve the Ising interactions by setting the tuning parameter A accordingly. This
specific value of A might later be interesting when working on cluster-inspired RG.

Our ansatz to preserve the Ising interactions originated in the idea of factoring the local weight
of a block together with the local blocking kernel t(s2i, s2i+1, s

′
i)w(s2i, s2i+1) into two spatially

separate variables x(s2i, s
′
i) and x(s2i+1, s

′
i) or short x2i and x2i+1, each of them related to one

side of the block, illustrated schematically as

s2i

s′i

s2i+1

w(s2i, s2i+1)

t(s2i, s2i+1, s
′
i)

ansatz:

s2i

s′i

s2i+1

x2i x2i+1
, (4.4)

and formulated as an equation

t(s2i, s2i+1, s
′
i)w(s2i, s2i+1) = x(s2i, s

′
i)x(s2i+1, s

′
i) = x2ix2i+1. (4.5)
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The ansatz is inspired by the link representation of the Ising model. It implies that the renor-
malized system can again be separated into links connecting neighboring spins. This can be
visualized as

s2i−2

s′i−1

s2i−1 s2i

s′i

s2i+1 s2i+2

s′i+1

s2i+3

w(s2i−1, s2i) w(s2i+1, s2i+2)

x2i−2 x2i−1 x2i x2i+1 x2i+2 x2i+3

renormalized link i− 1 renormalized link i

, (4.6)

where a renormalized link consists of the kernel and the original link in between the two
neighboring blocks. To determine the renormalized configuration’s weight, the original spins
need to be integrated out and the local weight of the renormalized link i can be written as a
function of s′i and s′i+1 as

w′[s′i, s
′
i+1] =



s2i+1



s2i+2

x(s2i+1, s
′
i)w(s2i+1, s2i+2)x(s2i+2, s

′
i+1). (4.7)

This again represents a nearest-neighbor interaction, thus the ansatz preserves the Ising inter-
actions. We are not finished however, as we have not yet found suitable weights for xi. To do
so, we must again consider the symmetries of the system. Parity implies that it should not
matter whether xi is on the left or on the right of a renormalized block spin, therefore the
uniform name xi makes sense. Spin flip symmetry implies that only the relative orientations
of the two spins should matter. This allows for two different weights assigned to xi, related to
parallel and anti-parallel spins, that we call y and z:

↑

↑

↑

↓

↓

↓

↓

↑

y z y z
spin-flip
symmetry

parity
symmetry

parity
symmetry

↑

↑

↑

↓

↓

↓

↓

↑

y z y z
spin-flip
symmetry

. (4.8)
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Inserting the different combinations of spins in equation (4.5) yields the set of equations

1− Aeβ = y2,

Aeβ = z2,

1

2
e−β = yz,

(4.9)

and specifies A as

A =
1

2
(1±


1− e−4β). (4.10)

Since our renormalized system is again a standard Ising model, it can again be fully character-
ized by an inverse temperature β′. We relate β′ to β, the inverse temperature of the original
system, by comparing the weight ratios of parallel versus anti-parallel spins of the original and
the renormalized system. With the local Ising Boltzmann weight specified in equation (1.23)
follows

w(↑, ↑)
w(↑, ↓) = e2β, (4.11)

and thus

w′(↑, ↑)
w′(↑, ↓) = e2β

′
, (4.12)

from which we can determine β′. We use equation (4.7) to determine w′(↑, ↑) and w′(↑, ↓)
integrating out the original spins as

↑ ↑
w′(↑, ↑):


: ↑ ↑y2eβ+

↑ ↓yze−β+
↓ ↑yze−β+
↓ ↓z2eβ,

↑ ↓
w′(↑, ↓):


: ↑ ↑yzej+

↑ ↓y2e−j+
↓ ↑z2e−j+
↓ ↓yzej.

(4.13)

The weight ratio is

w′(↑, ↑)
w′(↑, ↓) =

y2eβ + yze−β + yze−β + z2eβ

yzeβ + y2e−β + z2e−β + yzeβ
= e2β

′
, (4.14)

and using equations (4.9), β′ is found as

β′ =
1

2
ln(cosh 2β). (4.15)
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The value found for A in equation 4.10 depends on β. The fact that β changes in each blocking
step implies that also the parameter A needs to be adjusted in every blocking step to preserve
the Ising interactions.

4.2.1 1D Ising Model Fixed Points

The RG ansatz to preserve the Ising interactions can be used to find fixed points within the
1D Ising model by iteration of the RG transformation. The behavior of the coupling β with
the iteration is displayed in Figure 4.2 as an RG flow in the one-dimensional parameter space.
It converges to the trivial or high-temperature fixed point at β = 0, or T → ∞, where all
Boltzmann weights are 1 and all configurations are equally probable, thus random. This trivial
fixed point describes a system without any interactions and correlation length 0.

Figure 4.2: RG flow of the Ising-interaction-preserving RG transformation with initial value
β = 3 and converging to β = 0.

The found RG transformation will approach the trivial fixed point for any finite initial value
of β, as equation (4.15) implies that β′ < β. It is well-known that the 1D Ising model does
not have a critical point as another candidate for a fixed point. Nevertheless, there is another
fixed point, the so-called zero-temperature fixed point where β → ∞ and T = 0. It describes a
system where all spins are parallel. It is the only β value where the correlation length is infinite.
The correlation length will however remain infinite under the RG transformation, meaning that
the system remains at that point. The high-temperature and the low-temperature fixed points
are the only two fixed points for the 1D Ising model.

4.3 The Cluster-inspired RG Transformation in 1D

We now want to apply the cluster-inspired RG transformation to the 1D Ising model. We
had managed to define a cluster-inspired RG transformation through a blocking kernel that
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passes the concept of bonds and clusters on to the renormalized system in Section 3.3. While
the cluster-inspired RG allows to perform the cluster algorithm on the renormalized system
and obtain numerical results, we want to first take an analytical approach. The goal is to
analytically find Boltzmann weights of renormalized configurations that might allow to find the
renormalized Hamilton function. We do this in the bond representation, where spins have been
integrated out. From there, we could then return to the cluster and the spin representations
by using cluster logic.

We start with a single blocking step and define the renormalized nearest-neighbor bond variable
as b′i = 1 if activated and b′i = 0 if deactivated. Figure 4.3 shows an examplaric 1D configuration
on a short renormalized section that leads to an activated and a deactivated renormalized bond.

original system

renormalized system

blocking kernel

s2i−2

s′i−1

s2i−1 s2i

s′i

s2i+1 s2i+2

s′2i+1

s2i+3

b′i−1 b′i

Figure 4.3: Illustration of exemplary section of a renormalized bond configuration. Red lines
symbolize activated original bonds, orange lines activated kernel bonds and the
purple line an activated renormalized bond, whereas all uncoloured lines are deac-
tivated bonds. The renormalized bond between s′i−1 and s′i is activated, because
there is an end-to-end bond connection between them.

The cluster-inspired blocking kernel reduces from equation (3.11) to

tcluster(s2i, s2i+1, s
′
i, b

kernel
i ) = δbkerneli ,0A+ δbkerneli ,1


(δs2i,s′i + δs2i+1,s′i

)(
1

2
− A)


, (4.16)

which may be illustrated as

bkerneli : 0 1 1

tcluster : A (1
2
− A)δs2i,s′i (1

2
− A)δs2i+1,s′i

. (4.17)

4.4 Renormalized Transfer Matrices

We want to further formalize the concept of renormalized bonds in order to develop a method
to specify Boltzmann weights of renormalized configurations. We start by analyzing a single
renormalized link displayed in Figure 4.4. A renormalized bond will be activated or deactivated
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s2i s2i+1 s2i+2 s2i+3

b2i b2i+1 b2i+2

b′i

t(s2i, s2i+1, s
′
i, b

kernel
i ) t(s2i, s2i+1, s

′
i+1, b

kernel
i+1 )

s′i s′i+1

block i block i+ 1

Figure 4.4: Schematic illustration of a renormalized section with two neighboring blocks, con-
sisting of original bonds, kernel bonds and a renormalized bond.

σi σi+1τi

b′i

block i block i+ 1

.

Figure 4.5: Schematic illustration of renormalized section with newly defined variables σi and
τi that have replaced the original and the kernel bonds.

depending on the local link configuration. But how can its Boltzmann weights be described?
The idea, that came up during a discussion, was to unify the original and the kernel bonds
within a block and replace them by a newly defined single variable. This way, the renormalized
system can then be described again as a 1D system, which allows for a transfer matrix approach.
A potential matrix product should in this case not describe a partition function but a sum of
original and kernel configurations that contribute to a given renormalized configuration. The
idea was further elaborated and we chose to define two new variable types, one related to a
block, that we call block bond σi, and the other one connecting the blocks, that we call in-
between bond τi. These two variables will allow us to also integrate factors of 2 that arise from
the freedom of cluster flipping when the spins are integrated out, in their definition. They are
schematically displayed in Figure 4.5. Block bonds σi are constructed from original and kernel
bonds, whereas in-between bonds τi are constructed only from original bonds. Block bonds σi
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can take a total of 6 states with according weights w(σi)

1 2 3 4 5 6

4w0A 2w0(
1
2
− A) 2w0(

1
2
− A) 2w1A w1(

1
2
− A) w1(

1
2
− A),

σi :

w(σi) :

(4.18)

where w1 = eβ − e−β and w0 = e−β were introduced as weights related to activating or deacti-
vating a bond in the original system in Section 2.1.4. In-between bonds τi can take two values
with according weights w(τi):

τi:

w(τi): w1 2w0.
(4.19)

In all these weights w(σi) and w(τi), spins have already been integrated out and factors of 2
that arise when a missing bond causes an additional cluster to form, have been included. This
applies when either an original or a renormalized spin remains unbonded.

Having introduced the new variables σi and τi, we can now indeed regard the renormalized
system as a 1D chain again, as displayed in Fig 4.6.

σ1 σ2 σi−1 σi σi+1 σn−1 σnσn σ1. . . . . .

τ1 τi−1τ2 τi τi+1 τn−1 τn

Figure 4.6: 1D renormalized Ising system with n spins and periodic boundary conditions. The
original bonds and the kernel bonds have been united and replaced by block bonds
σi and in-between bonds τi.

We now treat a renormalized configuration as a chain of activated and deactivated renormalized
bonds, that are defined via the values of the block bonds σi and in-between bonds τi. To start,
we return to the discussion on a single link, displayed in Figure 4.5 and ask ourselves which
combinations of σi, τi and σi+1 will form an activated renormalized bond b′i = 1.

It is clear that in order to set a renormalized bond, τi needs to be activated, otherwise the bond
will be deactivated in any case. The states of σi and σi+1 that yield an activated bond are more
involved. Assuming τi is activated, we need to check for each combination of states whether
s′i and s′i+1 are bonded by an end-to-end connection of original and kernel bonds. For these
combinations, we can define a matrix that decides whether the renormalized bond is activated
or deactivated. Its rows represent the states of σi and its columns those of σi+1, such that
each entry of this matrix represents a combination of the two. We call this matrix W and its
elements Wσi,σi+1

. We fill the matrix with the Boolean values 1 for an activated and 0 for a
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deactivated renormalized bond, such that

W =





0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 1 1
0 0 0 0 0 0
0 1 0 0 1 1
0 1 0 0 1 1




. (4.20)

For example, W3,2 relates to the local configuration

σi σi+1τi

, (4.21)

and is set to 1 because the combination of σi = 3, σi+1 = 2 induces an end-to-end bond con-
nection between s′i and s′i+1 in case of an activated τi, and therefore activates the renormalized
bond.

We now combine the matrix W with the weights related to the three variables σi, σi+1 and τi to
construct a matrix which contains the weights that are related to activating the renormalized
bond and call this matrix Wbond. As the variables σi, σi+1 are each part of two renormalized
links and we must only contribute their weights once, we include only the square roots of their
weights. When we later multiply matrices, the other square root will be contributed from the
neighboring link. The matrix Wbond thus is defined as

(Wbond)σi,σi+1
=


w(σi)


w(σi+1)w1Wσi,σi+1

. (4.22)

We now know that all combinations of values of σi, σi+1 and τi that are not included in Wbond

will result in a deactivated renormalized bond b′i = 0. We keep the square root ansatz in mind
and formulate an according matrix Wno-bond that contains all these combinations. It is

(Wno-bond)σi,σi+1
=


w(σi)


w(σi+1)(2w0 + w1(1−Wσi,σi+1

)). (4.23)

Wbond and Wno-bond are called renormalized transfer matrices. One can now multiply these ma-
trices according to the given renormalized configuration consisting of activated and deactivated
bonds, and will obtain the weight of the renormalized configuration as the summation of all
the contributing weights. The boundary conditions therefore have to be considered. In case of
periodic boundary conditions, one must take the trace of the whole matrix product. In case
of open boundary conditions, the summation over all elements of the matrix product must be
taken and the missing square root factors at the ends need to be contributed.

Let us illustrate the construction of the renormalized weights with some examples. We start
with the smallest non-trivial renormalized system consisting of one link with open boundary
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conditions, which is

σ1 σ2τ1

b′1

. (4.24)

The weight of a renormalized configuration consisting of a single activated bond then is


w(σ1)


w(σ2)



σ1,σ2

(Wbond)σ1,σ2 , (4.25)

where that of a configuration with a single deactivated bond is


w(σ1)


w(σ2)



σ1,σ2

(Wno-bond)σ1,σ2 . (4.26)

The benefits of this procedure are not yet visible on such a small system. Let us consider a
slightly larger system that contains two renormalized links:

σ1 σ2 σ3τ1 τ2

b′1 b′2

. (4.27)

The weight of a renormalized bond configuration [b′1 = 1, b′2 = 0] is



σ1,σ3


w(σ1)


w(σ3)(Wbond ·Wno-bond)σ1,σ3 . (4.28)

More generally, for a system of n renormalized links with open boundary conditions

σ1 σ2 σn σn+1τ1 τn

b′1 b′n

, (4.29)

the weight of an examplaric renormalized configuration [1, 0, . . . , 1, 0] is



σ1,σn+1


w(σ1)


w(σn+1)(Wbond ·Wno-bond · · · · ·Wbond ·Wno-bond)σ1,σn+1 , (4.30)
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and the weight of the same configuration with periodic boundary conditions is

Tr(Wbond ·Wno-bond · · · · ·Wbond ·Wno-bond). (4.31)

Thus, we have managed to describe the weight of any renormalized configuration, that consists
of activated and deactivated nearest-neighbor bonds, by the renormalized transfer matrices.

4.5 Superbonds and True-No-Bonds

One may have noticed a flaw in the so-far construction of renormalized bonds and their weights.

In the bond representation of the original Ising model, bonds were set between neighboring
spins only. However, in the general construction of cluster-inspired RG, we saw that bonds
could connect any of the two renormalized spins, even if they were not nearest neighbors. This
also holds for the 1D case. End-to-end bond connections between distant renormalized spins
may skip intermediate renormalized spins via the original system, as displayed in Figure 4.7.
To partition the renormalized system into clusters, describing it only with nearest-neighbor
bonds is therefore too simplistic. Instead, we must also consider bonds between more distant
spins, that we call superbonds.

superbond

Figure 4.7: Exemplary local configuration yielding a superbond.

One may ask, how the configurations including superbonds could be missed in the so-far con-
struction of renormalized weights. In fact, they were not missed but instead, they were un-
knowingly included in the matrix Wno-bond. Wno-bond was just defined as a trash can for each
local configuration that does not activate the nearest-neighbor bond. And that is also the case
for a superbond.

By construction, we can identify the following rule for superbonds:

Superbonds and bonds do not superimpose each other in any way. No shorter superbond
or bond appears within the scope of a larger superbond and superbonds do not cross each
other.
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The rule arises when one considers a local configuration that yields a superbond more carefully.
Let us assume a superbond of a given length n, meaning that the two bonded spins are n
renormalized sites away from each other. The end-to-end connection that exists between the
two spins cannot rise into the renormalized system within the superbond, but only at its ends,
as displayed in Figure 4.7. If it did, an additional intermediate spin would be added to the
cluster and the superbond would split into two shorter superbonds. This also implies that all
renormalized spins in the interior of a superbond cannot be bonded to any other spins, but form
their own single-spin clusters. This further rules out the crossing of superbonds and generally
any superposition of bonds and superbonds.

We can now define a matrix related to the weight of a superbond of length n that is in fact
very similar to the bond matrix. The only differences are that instead of a single τi, a series of
n τ -variables need to be activated, and that all (n− 1) σ-variables within the superbond need
to be in state 4. The matrix Wsuperbond(n) thus is

(Wsuperbond(n))σi,σi+n
=


w(σi)


w(σi+n)w

n
1 (2w1A)

n−1Wσi,σi+n
. (4.32)

The other object that needs to be looked at more closely is that of a series of no-bonds. While
a single no-bond, embedded between bonds, cannot include the weights of any superbonds,
we now know that a series of no-bonds does. In fact, its weight includes the weights of all
combinations of superbonds that may fit within the length of the series of no-bonds, as we
defined the no-bond as a trash can, including all local configurations’ weights except for those
of a nearest-neighbor bond. We would like to define an object that describes a series of no-
bonds without the inclusion of superbonds, such that clusters become well-defined. When a
spin forms its own cluster, it is not possible to tell by the local configuration, whether the
spin is, or is not, in the interior of a superbond. An example of such a situation is given in
Figure 4.8, showing two configurations, one with a superbond, and one without. The case of
deactivated bonds that are not in the interior of a superbond must therefore be treated in a
non-local way. Let us therefore consider a spin that forms the end of a cluster. It is bonded to
one side by a bond or a superbond and unbonded to the other side. In this case, because bonds
and superbonds cannot superimpose, we know that the deactivated bond on its other side is
not within a superbond. To find out whether a deactivated bond is part of superbond or not,
it is necessary to know the configuration on both sides of the spin until the end of a bond or
superbond is reached and the resulting series of deactivated bonds must therefore be treated
as a single object. We call it true-no-bond of length n.
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s′i

superbond

(a)

s′i

true-no-bond

(b)

Figure 4.8: Two similar configurations on the multigrid. The local surroundings within nearest-
neighbor distance of s′i are equivalent, however, when considering the global config-
uration, it is in the interior of a superbond in configuration (a), where it is part of
a true-no-bond in (b).

We want to also define a matrix related to the weights of a true-no-bond of length n. However,
this is much harder than for the superbonds. We can start building it by taking series of
no-bond matrices. We know that the true-no-bond matrix is a part of it, but the series of no-
bond matrices also includes each variation of superbonds and shorter series of no-bonds that fit
within its length. We must therefore subtract all these contributions. The number variations
increases exponentially with the length n. An algorithm was implemented in Mathematica to
construct the true-no-bond matrices. For short lengths, it works well, but as the complexity
increases exponentially, it is limited to lengths of up to n ≈ 8. In a very general notation,
Wtrue-no-bond(n) can formulated as

(Wtrue-no-bond(n))σi,σi+n
= W n

no-bond − (all variations consisting of superbonds

and shorter series of no-bonds).
(4.33)

To be more concrete, a specific example Wtrue-no-bond(4) is specified as

(Wtrue-no-bond(4))σi,σi+n
= Wno-bond ·Wno-bond ·Wno-bond ·Wno-bond

−Wno-bond ·Wno-bond ·Wsuperbond(2)

−Wno-bond ·Wsuperbond(2) ·Wno-bond

−Wsuperbond(2) ·Wno-bond ·Wno-bond

−Wno-bond ·Wsuperbond(3)

−Wsuperbond(3) ·Wno-bond

−Wsuperbond(2) ·Wsuperbond(2)

−Wsuperbond(4).

(4.34)
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Objects can now be summarized. Bonds can be seen as superbonds of length 1 and no-bonds
can be seen as true-no-bonds of length 1. This reduces the objects required to define the renor-
malized bond configuration to superbonds and true-no-bonds. With these, any renormalized
configuration can be described. This finishes the formalization of the first step of cluster-inspired
RG in the 1D. It allows to find the Boltzmann weight of any renormalized bond configuration.
Figure 4.9 shows an exemplary configuration.

superbond
of length 2

superbond
of length 3

bondno-bond
true-no-bond
of length 2 bond bond bond

Figure 4.9: Exemplary configuration including bonds, superbonds and true-no-bonds of differ-
ent lengths.

The Boltzmann weight of the exemplary configuration in Figure 4.9 in case of non periodic
boundary conditions can be written as

Tr

Wno-bond ·Wsuperbond(2) ·Wbond ·Wsuperbond(3) ·Wtrue-no-bond(2) ·Wbond ·Wbond ·Wbond


.

(4.35)

4.6 Matrix Properties

We have found a way write down the Boltzmann weight of any renormalized bond configuration
after a first blocking step, however, only as a matrix product and including complicated true-
no-bonds. If we now want to find the configurations’ probabilities, we must find the partition
function. And if we want to proceed to iteration of the blocking transformation, we must
simplify the results. We try to do so by the means of linear algebra.

Properties of the matrices Wbond, Wsuperbond(n), Wbond and Wtrue-no-bond(n) have been found. Any
statements that involve Wtrue-no-bond(n) could not be verified for general n, due to the complexity
that lies within deducing the variations of superbonds. Instead, they were checked iteratively
increasing the length of true-no-bonds until the runtime became excessive. The properties,
found with Mathematica, are the following:

• Wbond is diagonalizable with a single non-zero eigenvalue

X := 2w2
1(
1

2
− A). (4.36)

• Wno-bond is also diagonalizable, however not simultanously with with Wbond. It has two
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very complicated non-zero eigenvalues Y and Z, which are

Y :=4( 1
2
−A)w0(w0+w1)+A(2w0+w1)2

−
√

−4( 1
2
−A)w1(2w0+w1)((

1
2
−A)w2

0−Aw1(2w0+w1))+(4( 1
2
−A)w0(w0+w1)+A(2w0+w1)2)2,

Z :=4( 1
2
−A)w0(w0+w1)+A(2w0+w1)2

+
√

−4( 1
2
−A)w1(2w0+w1)((

1
2
−A)w2

0−Aw1(2w0+w1))+(4( 1
2
−A)w0(w0+w1)+A(2w0+w1)2)2.

(4.37)

• All Wsuperbond(n) are all simultanously diagonalizable, also with a single eigenvalue

Xn := 2nAn−1(
1

2
− A)w2n

1 , (4.38)

where X1 ≡ X. Indeed, Wbond = Wsuperbond(1).

• Wtrue-no-bond(n) are diagonalizable, however, it remains unclear, whether they are simul-
taneously diagonalizable with any other of the matrices. The eigenvalues get more and
more complicated and Mathematica quickly reaches its limits with increasing n. The
eigenvalues cannot be split up to local factors, that could then be taken to the power of
number of links.

This is so far not very satisfactory. At least we know that superbonds (that include also bonds)
are simultanously diagonalizable and therefore commute. But they are not simultanously di-
agonalizable with Wno-bond and Wtrue-no-bond(n). There is, however, another significant property
of Wtrue-no-bond(n), that appears when one embeds a true-no-bond in between bonds and / or
superbonds. And this is by definition always the case. One then finds:

• Any objects Wbond ·Wtrue-no-bond(n) ·Wbond or more generally Wsuperbond(m) ·Wtrue-no-bond(n) ·
Wsuperbond(l) commute and are simultanously diagonalizable with Wsuperbond(n). In other
words, all superbonds and true-no-bonds commute, as long as no true-no-bonds are split
up or merged.

• Wsuperbond(m) ·Wtrue-no-bond(n) ·Wsuperbond(l) have only a single non-zero eigenvalue related
to the same eigenvector the non-zero eigenvalue of Wsuperbond(n). However, this eigenvalue
gets more complicated with increasing length n and again cannot be split up into local
factors that could be taken to the power of n.

All these insights bring the analytical approach to 1D cluster-inspired RG closer to its solution.
However, to actually solve the partition function seems unrealistic regarding the high complexity
and the loss of ultra-local behavior in objects as superbonds and the resulting true-no-bonds.

4.7 Special Values of A

The construction of analytical cluster-inspired RG on the 1D Ising model was done for general
values of the parameter A up to this point. However, complexity coming from superbonds and
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true-no-bonds diminish the hopes to find the general analytical solution. Therefore, it may be
useful to look at certain special values of the parameter A instead.

A = 0

Obviously, a special value for A is 0. It restricts the kernel bonds to always be activated and
therefore the block bonds σi to only take four out of its six states. The states 1 and 4, introduced
in equation (4.18), have weight 0. It avoids the existence of superbonds. Therefore, true-no-
bonds can be split up locally as they simply correspond to a series of no-bonds. With the
diagonalization of Wbond and Wno-bond, this allows to perform a second blocking step, described
in section 4.9.

A = exp(−4β)

The value A = exp(−4β) was found as a solution to the requirement of commutation between
Wbond and Wno-bond. It allows to determine the Boltzmann weight of a renormalized configura-
tion consisting of bonds and no-bonds as a function of only the numbers of bonds and no-bonds.
This is a strong simplification, however, it is useless as the clusters are not specified only from
bonds and no-bonds, but superbonds and true-no-bonds must be specified.

A = 1
2
(1−


1− exp(−4β))

The value A = 1
2
(1−


1− exp(−4β)) was the value used in the Ising-interaction-preserving RG

transformation performed in Section 4.2. The parameter A was first introduced as part of the
general 1D blocking kernel acting in the spin representation, that was constructed in Section
4.1. A was later identified again as the parameter that appeared in the cluster-inspired RG
transformation. Therefore, when A is set to the value used in Ising-interaction-preserving RG,
cluster-inspired RG is expected to also preserve the Ising interactions. However, no pattern
could be found that confirms this. How this manifests in the behavior of the renormalized
bonds, superbonds, and true-no-bonds appearing in our model remains an unsolved riddle of
this project.

4.8 Simplification for A = 0

As we could not solve the first blocking step of the cluster-inspired RG transformation on the
1D Ising model generally, we want to try it for the case A = 0. All we then need to deal with
are bonds and no-bonds related to the matrices Wbond and Wno-bond. The two matrices are both
diagonalizable and their eigenvalues for general A were introduced in Section 4.6.
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Wbond has a single eigenvalue X that when A is set to zero simplifies to

X = w2
1. (4.39)

Wno-bond has two eigenvalues Y and Z, which when A is set to zero simplify to

Y :=2w0(w0 + w1)−


2w0(w0 + w1)− w1w2
0(2w0 + w1),

Z :=2w0(w0 + w1) +


2w0(w0 + w1)− w1w2
0(2w0 + w1).

(4.40)

Wbond and Wno-bond are not simultanously, but we can introduce transformation matrices U and
V , as well as a combined transformation matrix T , which we call transition matrix, such that

Wbond = U





0 · · · · · · 0
...

. . . 0 ...
... 0 0 0
0 · · · 0 X




U−1, Wno-bond = V





0 · · · · · · 0
...

. . . 0 ...
... 0 Y 0
0 · · · 0 Z




V −1, T = U−1V.

(4.41)

The small number of non-zero eigenvalues allows further simplify a configuration’s weight. Let
us transform the weight of an exemplary configuration that contains one series of bonds and
one series of no-bonds into the Wbond eigenbasis, such as

Tr



Wbond . . .Wbond  
n

Wno-bond . . .Wno-bond  
m

Wbond . . .Wbond  
l





= Tr




U





0 · · · · · · 0
...

. . . 0 ...
... 0 0 0
0 · · · 0 Xn




U−1V





0 · · · · · · 0
...

. . . 0 ...
... 0 Y m 0
0 · · · 0 Zm




V −1U





0 · · · · · · 0
...

. . . 0 ...
... 0 0 0
0 · · · 0 X l




U−1





= Tr









0 · · · · · · 0
...

. . . 0 ...
... 0 0 0
0 · · · 0 Xn




T





0 · · · · · · 0
...

. . . 0 ...
... 0 Y m 0
0 · · · 0 Zm




T−1





0 · · · · · · 0
...

. . . 0 ...
... 0 0 0
0 · · · 0 X l








.

(4.42)

Generalising this result, Wbond and Wno-bond can both be replaced by their diagonals if one adds
the transition matrix T at transitions from bond to no-bond and its inverse T−1 at transitions
from no-bond to bond. Let us refer to a series of no-bonds as a multi-no-bond from now on.
We assign the transition matrix and its inverse to the diagonalized multi-no-bond matrix, such
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that a multi-no-bond in a configuration corresponds to a matrix term

T





0 · · · · · · 0
...

. . . 0 ...
... 0 Y m 0
0 · · · 0 Zm




T−1. (4.43)

in its weight, appearing inside the trace in between diagonalized Wbond, whose only non-zero
element X is the sixth element on the diagonal. Thus the only contributing element of the
matrix term is




T





0 · · · · · · 0
...

. . . 0 ...
... 0 Y m 0
0 · · · 0 Zm




T−1





6,6

= T6,5Y
mT−1

5,6 + T6,6Z
mT−1

6,6 . (4.44)

Therefore the Boltzmann weight can be written as

Tr



Wbond . . .Wbond  
n

Wno-bond . . .Wno-bond  
m

Wbond . . .Wbond  
l





= Xn+l(T6,5Y
mT−1

5,6 + T6,6Z
mT−1

6,6 ),

(4.45)

where n + l is the total number of bonds and m is the length of the one multi-no-bond. A
general Boltzmann weight that contains n bonds and m multi-no-bonds of lengths l1, . . . , lm is

Xnwmulti-no-bond(l1) . . . wmulti-no-bond(lm), (4.46)

where

wmulti-no-bond(n) = T6,5Y
nT−1

5,6 + T6,6Z
nT−1

6,6 . (4.47)

This is a strong simplification of the Boltzmann weights of renormalized configurations that
brings the approach another step closer to the solution. Even though, this was not done here,
obtaining a solution for the partition function in the case of A = 0 does not seem to be
completely unrealistic. One might try to formalize the summation over all bond and nobond
combinations using combinatorics. We were however not particularly interested solving only
the first blocking step, but instead we tried to continue with the second step instead.
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4.9 Second Blocking Step

In order to perform a second renormalization step, we work with the three eigenvalues X, Y
and Z that have been found. We treat these as weights of three new renormalized bond states.
We therefore redefine the renormalized bond variable b′i and its weights as

b′i:

w(b′i):

bond

X

no-bond of type Y

Y

no-bond of type Z

Z.

(4.48)

Even though we do not know whether Y and Z can physically be attributed to distinct states,
the seperation works mathematically. By it, the Boltzmann weight can be brought to a local
form again, that consists of the weights of the renormalized bonds and their transitions, which
are the particular entries of the transition matrix T that appear in equation (4.47). We relabel
them by type of transition to

tXY = T6,5, (4.49)

tY X = T−1
5,6 , (4.50)

tXZ = T6,6, (4.51)

tZX = T−1
6,6 , (4.52)

where the two indices relate to the bond values to the left and the right of the transition.

As we already did in the first blocking step, we again define block bonds σ′
i and in-between

bonds τ ′i , that take the values and weights

1 2 3 4 5 6

1
2
X 1

2
X Y Y Z Z,

σ′ :

w′(σ′) :

τ ′ :

w′(τ ′) : X 2Y 2Z.
(4.53)

New are the transitions that we include in an object t′, which we mark as yellow dot. Between
equal values of b′i such as X and X, no transition occurs, therefore t′ is set to 1. Y and Z
are two different eigenvalues of the same matrix and appear only separately in the weight of
a multi-no-bond, found in equation (4.47). An entire multi-no-bond must therefore decide on
type Y or type Z in any configuration. This is achieved by setting the transitions between Y
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and Z to 0. Thus, t′ takes the values

t′ : X

t′ = tXY = T6,5

Y Y

t′ = tY X = (T−1)5,6

X

X

t′ = tXZ = T6,6

Z Z

t′ = tZX = (T−1)6,6

X

Y

t′ = 0

Z Z

t′ = 0

Y

t′ = 1,

X X

t′ = 1,

Y Y

t′ = 1.

Z Z

(4.54)

In the first blocking step, defining transitions was not necessary as these would all have been
equal to 1. This is because the weight could be described without the use of matrices and no
change of basis was necessary.

With these building blocks, we can construct the bond and no-bond matrices of the second
renormalized layer. Schematically, the construction resembles that of the first renormalized
layer with the difference of the additional t′. In illustration on it is found in Figure 4.10.

t′ t′
first renormalized system

second renormalized system

σ′
i σ′

i+1τ ′i

s′′i s′′i+1

block i block i+ 1

Figure 4.10: Schematic illustration of the second renormalization step on a single link section
with relevant variables.

We now construct a W second matrix analogously to the matrix W in the first blocking step,
which decides whether a bond is activated for a given combination of values σ′

i and σ′
i+1, as

long as τ ′i is activated. It also contains the transitions t′ that did not exist in the first blocking
step. W second is

W second =





1 1 tXY 0 tXZ 0
1 1 tXY 0 tXZ 0
0 0 0 0 0 0

tY X tY X tY XtXY 0 tY XtXZ 0
0 0 0 0 0 0

tZX tZX tZXtXY 0 tZXtXZ 0




. (4.55)
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Including the square roots of the weights of σ′
i and σ′

i+1 and an X for the activated τ ′i , the
second renormalized bond matrix W second

bond follows from it as

W second
bond (σ′

iσ
′
i+1)

=


w′(σ′
i)


w′(σ′
i+1)XW second

(σ′
iσ

′
i+1)

(4.56)

In order to construct W second
no-bond, we need one more element, which was also trivial in the first

blocking step. There, we simply inverted the Boolean values in the W matrix elementwise
as (1 − Wσi,σi+1

) to obtain the combinations that lead to a no-bond. Now, however, also the
transition factors t′ need to be included. We define the following matrices

WXFull =




1 tXY tXZ

tY X tY XtXY tY XtXZ

tZX tZXtXY tZXtXZ



 ,

WYFull =




tXY tY X tXY tXY tY Z

tY X 1 tY Z

tZY tY X tZY tZY tY Z



 ,

W ZFull =




tXZtZX tXZtZY tXZ

tY ZtZX tY ZtZY tY Z

tZX tZY 1



 .

(4.57)

Each of these matrices stands for the transition factors appearing while having a given τ ′i value
X, Y or Z. They are actually 6×6 matrices and each entry in equation (4.57) stands for a 2×2
block filled with identical elements. Each of the matrices entries still refers to a combination
of the two variables σ′

i and σ′
i+1. The only entries out of these three matrices that lead to an

activated renormalized bond, were the ones in W second as part of WXFull, and all other entries
will lead to a deactivated renormalized bond.

W second
no-bond can be constructed by summing over all configurations except the ones leading to a

bond, thus it is

W second
no-bond(σ′

iσ
′
i+1)

=


w′(σ′
i)


w′(σ′
i+1)


X


WXFull

(σ′
iσ

′
i+1)

−W second
(σ′

iσ
′
i+1)


− 2YWYFull

(σ′
iσ

′
i+1)

− 2ZW ZFull
(σ′

iσ
′
i+1)


.

(4.58)

From the two matrices W second
bond and W second

no-bond, we can again construct the weight of any renor-
malized configuration, this time relating to second blocking step. An exemplary Boltzmann
weight is

Tr

W second

bond . . .W second
bond W second

no-bond . . .W
second
no-bondW

second
bond . . .W second

bond


. (4.59)

We analyze the properties of W second
bond and W second

no-bond. We try again to diagonalize them in hope
for a repetitive pattern in their eigenvalues. However, Mathematica tells us thatW second

bond is not
diagonalizable.

We accept that our approach to the analytical solution of cluster-inspired RG has exceeded a
reasonable level of complexity and decided at this point to move on to numerical methods.
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5 2D Numerical Cluster-inspired RG

5.1 Cluster-inspired RG on the Triangular Lattice

5.1.1 Construction of the Blocking Kernel

In Chapter 3, we constructed the cluster-inspired RG transformation. In Chapter 4, we applied
it to the 1D Ising model and tried to solve it analytically. We are now going to apply it to the
2D Ising model and work on it numerically. We proceed on the triangular lattice, where we
chose triangular blocks with three original spins, as displayed in Figure 5.1. The structure of
blocks in the lattice is displayed in Figure 5.2.

s∆1 s∆2

s∆3

s′∆

t(s∆1 , s∆2 , s∆3 , s
′
∆)

renormalized system

blocking kernel

original system

Figure 5.1: Illustration of a single block on the 2D triangular lattice.

Figure 5.2: Illustration of the structure of 2D triangular blocks in the lattice.

The cluster-inspired blocking kernel follows from its general form in equation (3.11) as

tcluster(s∆1 , s∆2 , s∆3 , s
′
∆, b

kernel
∆ ) = δbkernel∆ ,0A+ δbkernel∆ ,1

1− 2A

3
(δs∆1

,s′∆
+ δs∆2

,s′∆
+ δs∆3

,s′∆
), (5.1)
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or alternatively written as a funtion of b̃kernel∆

tcluster(s∆1 , s∆2 , s∆3 , s
′
∆, b̃

kernel
∆ ) = δb̃kernel∆ ,0A+



i∈∆

δb̃kernel∆ ,iδsi,s′∆
1− 2A

3
. (5.2)

The two versions can be illustrated as

tcluster : A
1−2A

3
δs∆1

,s′∆
1−2A

3
δs∆2

,s′∆
1−2A

3
δs∆3

,s′∆
.

bkernel∆ : 0 1 1 1

b̃kernel∆ : 0 1 2 3

(5.3)

The iterated blocking kernel on the triangular lattice is

t
(nr)
cluster(s∆(nr) , s

′
∆(nr) , b

kernel
∆(nr))

= δbkernel
∆(n)

,0

1− (1− 2A)nr

2
+ δbkernel

∆(n)
,1



i∈∆(nr)

δsi,s′
∆(nr)

(1− 2A)nr

3nr
.

(5.4)

5.1.2 Symmetries and Block Sectors on the Triangular Lattice

We chose to proceed on the triangular lattice in the hope to later be able to parametrize a
renormalized Hamilton function with fewer terms due to the larger number of symmetries of
the triangular lattice, compared to the square lattice. The downside of the triangular lattice is
a higher geometrical complexity that also manifests itself in its RG blocking transformations.
The lattice symmetries of the square and the triangular lattices are

symmetries square lattice triangular lattice
rotation 90◦ 60◦

translation 4 axes 6 axes
reflection 4 axes 6 axes .

(5.5)

The shapes of a finite, periodic lattice that obey these symmetries are the square for the square
lattice and the hexagon for the triangular lattice, displayed in figure 5.3.

Blocks of the triangular lattice consist of three original spins. Unlike the square lattice, the
triangular lattice leaves two options to choose the orientation of the blocks, displayed in Figure
5.4 . The triangular shaped blocks can be oriented to point one way or the other.

Renormalizing the triangular lattice also changes its orienation by 90◦. When the original
lattice was oriented such that it included horizontal lines of links, the renormalized lattice will
instead include vertical lines of links. These two different orientations alternate in the RG
transformation. They are are displayed in Figure 5.5.
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(a) (b)

(c) (d)

Figure 5.3: Finite lattices of shapes that obey the lattice symmetries. (a) shows a finite square
shaped square lattice and (b) a finite hexagonally shaped triangular lattice. (c) and
(d) show the embedding of these finite lattices in a larger lattice, a situation that
occurs when periodic boundary conditions are applied, where the lattice repeats
itself over and over again in each direction.

Because of the change in orientation, the block sectors happen to obtain a non-trivial shape
that converges towards a fractal. The exact shape depends on the chosen sequence of block
orientations. Figure 5.6 shows the shapes of the block sectors for two different sequences. The
block sectors do not obey all lattice symmetries of the triangular lattice. While they do obey
translational symmetry, they explicitly break the 60◦ rotational symmetry to a 120◦ rotational
symmetry. This happens already in the first blocking step with the triangular shaped blocks.
In the case of multiple blocking steps, also the reflectional symmetry is broken. This symmetry
breaking puts doubts on the superiority of the triangular lattice over the square lattice.
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(a) (b)

Figure 5.4: This figure shows the two orientations of the blocks that may be chosen in each RG
step. The blocks in (a) point downwards, whereas those in (b) point upwards.

(a) (b)

Figure 5.5: Illustration of two different orientations of the triangular lattice that alternate with
each blocking step.

5.2 Verification of Cluster-inspired RG on a Small Triangular
Lattice

The operation of the cluster-inspired RG was tested on a small triangular multigrid with 12
original spins and 4 renormalized spins, related by one blocking step. This small system was
chosen for its small number of configurations that allow to perform exact calculations by sum-
mation over all of them. The exact results allow to evaluate the numerical results of the Monte
Carlo cluster algorithm by comparison.

A hexagonally shaped lattice can not easily be implemented in an algorithm the way it is, as
it cannot be structured by rows and columns of constant length. It can, however, be cut and
rearranged into a rhomboidally-shaped lattice in a way that the two systems are equivalent when
endowed with periodic boundary conditions. The rhomboidal shape can then be structured by
rows and columns. This process is shown in Figure 5.7.

It was found geometrically that the renormalized system with four spins and periodic boundary
conditions may only have three configurations with distinct Boltzmann weights. All others are
equivalent to these three due to translational symmetry and spin-flip symmetry. We defined
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(a)

(b)

Figure 5.6: This figure shows two different types of block sectors that have both been produced
from 9 iterated blocking steps on a triangular lattice. The size of the lattice was
chosen such that the renormalized lattice consists of four remaining spins, related to
four differently coloured block sectors. The plots each show a multiple of four renor-
malized systems, divided into block sectors, that have been periodically appended
to each other in order to better show the equality in shape of the block sectors. (a)
shows the block sectors related to the alternation of the two block orientations, in
which the blocks point left and down. (b) shows the block sectors related to the
alternation of all four block orientations in a cyclic pattern.

the first configuration to consist of four up spins, the second to consist of three up and 1 down
spin and the third of two up and two down spins. The three configurations are illustrated in
Figure 5.8.

Configurations Boltzmann weights are not directly accessible in Monte Carlo data, as they
would first need to be correctly normalized. An entity that can easily be extracted, however,
is the ratio between any two configurations’ Boltzmann weights, that can be approximated
by the configurations’ relative frequencies. A system with only three distinct configurations
can be characterized by two of their mutual weight ratios, which we used as variables in our
verification.

The exact computation iterated through all existing original configurations and summed up the
weight contributions to each renormalized configuration under the incorporation of the blocking
kernel.

The numerical simulation was based on the cluster algorithm, utilizing its flexibility to flip
clusters as desired. To improve accuracy, we designed the algorithm that restricted the renor-
malized system to only two out of three configurations in a single simulation, to then compare
the weights of these two configurations. This was achieved by fixing three out of the four
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(a) (b)

Figure 5.7: Schematic illustration of the 12 spin triangular lattice as a hexagonal shape in (a)
and as a rhomboidal shape in (b). The hexagonal shape may be rearranged to a
rhomboidal shape by cutting it into three pieces and rearranging these. The colored
lines in colors other than green symbolize the cutting lines.
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Figure 5.8: Schematic illustration of the three distinct configurations on the renormalized 4-spin
triangular lattice with periodic boundary conditions.

renormalized spins to a specific values by ensuring that clusters containing any of these spins
were not allowed to flip. This is a legitimate method as it obeys the only restriction of spin-flip
symmetry in its design. The original system still obeys ergodicity and detailed balance.

The successful operation of the cluster-inspired RG was verified by satisfactory statistical evi-
dence. The results of the ratio between configuration 1 and configuration 2 for different values
of the inverse temperature β as well as the parameter A are found in Figure 5.9. The results of
the ratio between configuration 2 and configuration 3 are omitted as they look very similar. The
errors throughout the tested range of parameter values β and A were estimated by bootstrap
and seemed to match the observed deviations, that could be controlled by a sufficient sample
size.
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Figure 5.9: Plots showing the results of the weight ratios between configuration 1 and configu-
ration 2. The exact results in blue are compared to the numerical results in orange
under the inclusion of error bars for different values of β and A. The y-axis is
displayed on a logarithmical scale for better readability.
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6 Conclusion

We have introduced the cluster-inspired RG transformation, which operates on Ising models
and enables the execution of a cluster algorithm on the multigrid. This transformation employs
a blocking kernel that bonds renormalized spins to original spins, integrating them into their
original clusters. The concept is applicable to various dimensions and lattice types, with the
only parameter affecting the blocking kernel being the number of spins per block.

We applied the cluster-inspired RG transformation to the 1D Ising model, integrating out the
spins to operate in the bond representation. Our goal was to formalize the process, iterate it
analytically, and ideally solve it. We successfully formalized the first blocking step but did not
achieve sufficient formalization of the second step to continue iterating the blocking further. The
formalization of the first blocking step revealed that the renormalized system could no longer
be described using a bond representation that includes only nearest-neighbor bonds. Instead,
bonds also occur between more distant spins, which we term superbonds. These superbonds
prevent the renormalized bond system from being described by ultra-local variables, seemingly
breaking its ultra-locality. However, this presents an unsolved puzzle. While working with the
spin-based RG transformation, we discovered a special value of the parameter A that preserves
the Ising interactions. When A is set to this value, the cluster-inspired RG transformation
should also yield ultra-local interactions. However, we did not observe any confirmation of
this. How can this be compatible with the existence of superbonds? Initially, we hypothesized
that setting A = 0 would result in nearest-neighbor interactions, as superbonds are absent at
that value. However, this hypothesis did not match our results. If our insights are accurate,
then the translation from a renormalized bond and superbond representation back to a spin
representation must be more complex than we initially expected. While the first blocking step
was formalized and simplified to a great extent, the approach used for its iteration seems to be
a dead end. It is possible that a different approach might work better, such as one that does
not treat the blocking steps separately but instead starts directly with n blocking steps. One
might also consider leveraging the fact that the weights of activated kernel bonds are uniform
within the block sectors. However, these are just preliminary ideas.

After completing the analytical work on the 1D Ising model, we applied the cluster-inspired
RG transformation to the 2D Ising model and executed the Monte Carlo cluster algorithm on
the multigrid. We chose to focus on the triangular lattice due to its additional symmetries
compared to the square lattice. To verify the successful operation of the concept, we began
with a small system consisting of 12 original spins and 4 renormalized spins. This allowed
us to compare numerical data to analytical results, which could be obtained for such a small
system. We designed the cluster simulation to restrict the renormalized system to occupy only
two configurations, taking advantage of the freedom of cluster flipping. We collected numerical
data on the weights of the configurations and compared their ratios to the analytically obtained
ratios. The data provided clear evidence for the successful operation of the cluster algorithm
on the multigrid.

This lays the foundation for further steps towards parametrizing fixed points. The next step in
the project should likely involve further consideration of how to best parametrize the Hamilton

71



function and apply the cluster-inspired RG to larger systems.
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