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Abstract
In this thesis, we investigate a parameterization of the fixed-point Hamil-
tonian for the Ising model utilizing the real space renormalization group
(RSRG) technique. This method is an important approach to under-
stand critical phenomena within statistical physics. The Ising model, a
simplified framework, provides profound insights into phase transitions
and critical behaviors. Initially, we discuss the concepts of renormaliza-
tion group decimation and blocking in the context of the one-dimensional
Ising model. Subsequently, we introduce a cluster-inspired renormaliza-
tion approach. Herein, the Ising model is reformulated from its conven-
tional spin representation to a cluster representation, characterized by
active and inactive bonds among spins. Following this transformation,
the model undergoes a blocking process, leading to the calculation of
new Boltzmann weights for the renormalized system. We then develop a
method to iterate this renormalization process and demonstrate its ap-
plication through a single iteration step. In the latter part of the thesis,
we present a strategy for parameterizing the two-dimensional Ising model
using n-point graph functions. This approach facilitates the derivation of
conditions for a finite-volume approximation of the fixed-point Hamilto-
nian in the two-dimensional Ising model.Using this method, we success-
fully identify a trivial fixed point.
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1 Introduction

1 Introduction
The Ising model [1] serves as a foundational framework within statistical physics, offering a
simplified yet profound means to elucidate critical concepts. The solution of its one- and two-
dimensional variants has markedly advanced the understanding of various analytical methods,
such as the transfer matrix technique and series expansion [2] ,[3]. These solutions have fur-
thered our understanding of critical phenomena and phase transitions. Consequently, they have
enriched the discourse on the renormalization group, an innovative technique introduced by Wil-
son [4], [5]. The renormalization group methodology investigates the transformation of coupling
constants within a system upon scaling the length. In essence, it ensures that only important
couplings persist at a specific scale, thereby generating a family of Hamiltonians characterized
by diverse coupling constants [6]. These Hamiltonians reside within a theory space, wherein a
critical manifold exists. Atop this manifold, all theories exhibit an infinite correlation length,
implying that the correlation length remain invariant under renormalization. The critical man-
ifold harbors fixed points and acts as a basin of attraction for these points, introducing the
principle of universality. This principle posits that different models sharing that they have a
critical Hamiltonian on this manifold converge to a unified fixed-point Hamiltonian, thus be-
longing to the same universality class. Given that the Ising model undergoes a second-order
phase transition, characterized by an infinite correlation length and a corresponding critical
temperature, it is inferred that a fixed-point Hamiltonian exists for this model. The objective
of this thesis is to identify and parameterize this Hamiltonian. To achieve this, a suitable renor-
malization group transformation must be selected.

To elucidate the renormalization process applied to the Ising model, an introductory exposi-
tion on the Ising model and its solutions in one and two dimensions is presented in Chapter 2.
Following this, an overview of Monte Carlo techniques is provided, highlighting their necessity
for the numerical solution of the Ising model. Chapter 4 delves into the renormalization group,
offering a foundational discussion on renormalization principles. This includes the introduction
of the blocking kernel, alongside an exploration of its implications for the partition function
and observable quantities. Subsequently, the dynamics of coupling flow and the concept of fixed
points are examined. In Chapter 5, an overview of established renormalization group techniques,
specifically decimation [7] and block spin transformation [8], are discussed. Following this, a
novel cluster-inspired renormalization group approach is introduced. This method necessitates
reformulating the Ising model from its conventional spin representation to a cluster-based frame-
work, wherein bonds between spins are classified as activated or deactivated. Subsequent steps
involve calculating new Boltzmann weights for these bonds within the renormalized lattice. A
methodology to iterate this process is constructed, and a single iteration is executed. However,
the proliferation of distinct deactivated bond types with each renormalization cycle prevents
further iterations and with that the potential to gain more insight about the fixed point.

In Chapter 6, a methodology is devised for the parametrization of the fixed-point Hamilto-
nian, aligning with the principles of the cluster-inspired renormalization group approach. This
parametrization strategy employs n-point graphs, each assigned a specific Boltzmann weight
when all spins within the graph align parallelly, and a weight of one in all other cases. Subse-
quently, Chapter 7 details the derivation of an analytical finite-volume approximation for the
fixed-point Hamiltonian. This approximation is formulated within a finite volume, encapsulat-
ing a periodic triangular lattice comprising 12 spins. A renormalization step, characterized by a
scaling factor of

√
3, leads to a coarser lattice structure with four spins. The spin configurations
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1 Introduction

of this coarser lattice are deduced as aggregates of various configurations from the finer lattice.
By employing n-point graph parametrizations for both fine and coarse lattice configurations,
a set of conditions emerges for the Boltzmann weights of the n-point graphs, facilitating the
determination of the fixed-point Hamiltonian’s parameters.
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2 Ising Model

2 Ising Model
The Ising model, introduced by the physicist Ernst Ising in 1925, serves as a theoretical frame-
work for understanding ferromagnetism and phase transitions. Its simplicity stems from the
assumption that spin variables sx can take on only two discrete values, ±1. The Ising model
Hamiltonian function is given by

H[s] = −J
∑
⟨xy⟩

sxsy − B
∑

x

sx, (1)

where J > 0 represents the coupling constant for nearest-neighbor interactions, denoted by ⟨xy⟩,
and B is an external magnetic field. Note that from now on in this thesis, the term "Hamiltonian"
will refer specifically to the classical Hamiltonian function. The energy of a configuration in
the Ising model depends on the alignment of adjacent spins and their interaction with the
external magnetic field, reflecting the interplay between thermal fluctuations and interaction
energies. In the absence of an external magnetic field (B = 0), the model exhibits a global
Z2 symmetry under the transformation sx → −sx for all spins. At the critical temperature
T = Tc, the Ising model undergoes a second-order phase transition for dimensions d ≥ 2. For
temperatures T > Tc, spins form several small magnetic domains of up (s = +1) or down
(s = −1) orientations, whereas for T < Tc, spins tend to align parallel to each other. The
partition function of the model is defined as

Z =
∑
[s]

e−βH[s] =
N∏

x=1

∑
sx=±1

e−βH[s], (2)

where β = 1/kBT , kB is the Boltzmann constant, and T is the temperature. The two-point
correlation function is given by

G(2)(x, y) = ⟨sxsy⟩ = 1
Z

∑
[s]

sxsye−βH[s]. (3)

To analyze the correlation between two sites separated by distances greater than a few lattice
spacing’s, it is useful to consider the connected two-point function, which subtracts the mean
spin values:

G(2)
c (x, y) = ⟨sxsy⟩ − ⟨sx⟩⟨sy⟩. (4)

Above the critical temperature (T > Tc), the mean spin value approaches zero, making
G(2)

c (x, y) and G(2)(x, y) equivalent. At large distances, the connected correlation function de-
pends on the absolute distance between spins, r = |x − y|, and decays exponentially with
distance:

G(2)
c (x, y) ≈ e−r/ξ. (5)

The correlation length ξ represents the scale over which spins are correlated. Under typical
conditions, ξ does not exceed a few lattice spacings. However, at the critical temperature Tc,
the correlation length diverges, indicating long-range correlations across the lattice and the
emergence of universal behavior [6].

8



2 Ising Model

2.1 Solution of the One-Dimensional Ising Model
By considering the partition function

Z =
∑
[s]

e−βH[s] (6)

with the Hamiltonian
H[s] = −J

∑
⟨xy⟩

sxsy − B
∑

x

sx (7)

one can see that it is possible to rewrite the Hamilton as an sum over just one spin variable
x = 1, 2, ..., N of the energy E(sx, sx+1) between two neighbor spins. Note that the energy takes
only four different values, since the spins sx = ±1 and sx+1 = ±1 can only take 4 values. With
periodic boundary condition, the Hamilton can be rewritten as

H[s] =
∑

x

E(sx, sx+1) =
∑

x

[−Jsxsx+1 − B

2 (sx + sx+1)]. (8)

Where J is the coupling constant of two nearest-neighbour spins and B is the external
magnetic field. With this simplification it is possible to write the partition function as

Z =
∑

x

e−βE(sx,sx+1) = e−βE(s1,s2)︸ ︷︷ ︸
t1,2

e−βE(s2,s3)e−βE(s3,s4) . . . . (9)

Where we introduced the transfer matrix tsx,sx+1 = e−βE(sx,sx+1). With this notation one can
write e−βH[s] as

e−βH[s] = ts1,s2ts2,s3 ...tsN ,s1 . (10)
The components of the transfer matrix contains the Boltzmann weights of all possible spin

configurations of two nearest-neighbour spins

t =
(

e−βE(+1,+1) e−βE(+1,−1)

e−βE(−1,+1) e−βE(−1,−1)

)
=
(

eβ(J+B) e−βJ

e−βJ eβ(J−B)

)
. (11)

Now it is possible to calculate the partition function as a summation over all possible spin
values over the transfer matrices

Z =
∑
s1

∑
s2

...
∑
sN

ts1,s2ts2,s3 ...tsN ,s1 = Tr[tN ] (12)

which is the trace of the transfer matrix t to the power of the number of spins N . Since t is a
real 2 × 2 matrix, with two orthogonal eigenstates |ϕ±⟩ it is convenient to write the partition
function as an function of the eigenvalues λ± with t |ϕ±⟩ = λ − ± |ϕ±⟩.

Z = ⟨ϕ+| tN |ϕ+⟩ + ⟨ϕ−| tN |ϕ−⟩ = λN
+ + λN

− , λ± = eβJ
[
cosh(βB) ±

√
sinh(βB)2 + e−4βJ

]
(13)

The correlation length ξ for a given Hamiltonian H̃, within a system situated on a lattice with
lattice spacing a, is determined by the energy gap between the first two eigenvalues h±, expressed
as a(h− − h+) = a/ξ. By defining the transfer matrix t = e−aH̃[s] and setting λ± = e−ah± , we
can compute the correlation length ξ for the one-dimensional Ising model using the equation
[9]:

a(h− − h+) = ln
(

λ+

λ−

)
= a

ξ
. (14)
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2 Ising Model

2.1.1 Cluster Representation

For the following discussion, it is assumed that there is no external magnetic field, i.e., B = 0.
We introduce the bond variables b⟨xy⟩ = 1, 0. If a bond of two parallel neighboring spins is
activated, the bond variable is b⟨xy⟩ = 1; otherwise, it is zero. So we can rewrite

e−βE(sx,sy) =
1∑

b⟨xy⟩=0
e−βE(sx,sy ,b⟨xy⟩). (15)

Since we have two spin values s = ±1 and two bond values, the right-hand side can take the
values

e−βE(s,s,1) = eβJ − e−βJ e−βE(s,s,0) = e−βJ

e−βE(s,−s,1) = 0 e−βE(s,−s,0) = e−βJ (16)

such that

e−βE(s,s) = eβJ = e−βE(s,s,1) + e−βE(s,s,0)

e−βE(s,−s) = e−βJ = e−βE(s,−s,1) + e−βE(s,−s,0) . (17)

Using the bond representation, the Ising model can be reformulated to include links between
neighboring spins, on these links bonds can be either active or inactive. The Boltzmann weight
for an active bond is given by W1 = eβJ − e−βJ , while the weight for an inactive bond is
W0 = e−βJ [9]. An example of such a reformulation can be seen in Figure 1.

↑ ↑ ↑ ↓

link
Bond representation

Spin representation

Figure 1: The Ising model has been reformulated from its spin representation to a bond rep-
resentation. In this depiction, activated bonds are represented by thick blue lines,
indicating the existence of an active bond between spins. Notably, there is no acti-
vated bond on the link between the second-to-last and the last spin.

This enables the expression of the Ising model’s partition function in terms of the new degrees
of freedom introduced by the bond variables, leading to a summation over the products of all
possible bond/no-bond configurations.

Z =
∑

x

e−βE(sx,sx+1) =
∑

x

1∑
b⟨x(x+1)⟩=0

e−βE(sx,sx+1,b⟨x(x+1)⟩) =
∑
[b]

2nC
∏
x

W⟨x(x+1)⟩ (18)

where [b] denotes the summation across the products of all potential configurations of bond/no-
bond weights and W⟨x(x+1)⟩ can take the value W1 or W0 whenever a bond is activated or
deactivated on a link between the sites x and x + 1. Further nC represents the number of
clusters occurring within a configuration where clusters are defined as regions where all spins
are aligned in the same direction. Spins belonging to different clusters are uncorrelated, and
each spin is part of exactly one cluster. Moreover, within a cluster, all spins can be flipped
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2 Ising Model

without changing the Boltzmann weight. This property allows us to express the magnetization,
defined as the sum over all spins

M [s] =
∑

x

sx =
∑

C
MC, (19)

as a sum over all clusters C of the cluster magnetization MC. The cluster magnetization MC is
a sum over all spins in this cluster, and since all spins in a cluster are parallel, this sum reduces
to the cluster size |C|

MC =
∑
x∈C

sx = ±
∑
x∈C

1 = ± |C| . (20)

This also allows us to write the susceptibility χ of a d-dimensional lattice with length L as a
sum over all cluster magnetisation’s MC

χ = 1
Ld

⟨M2⟩ = 1
Ld

〈(∑
C

MC

)2〉
= 1

Ld

〈
(MiMj)2

〉
= 1

Ld

〈
NC∑
i=1

M2
i

〉
. (21)

We utilized the fact that two different clusters, denoted as Ci and Cj, are uncorrelated for
i ̸= j. Consequently, the magnetization MiMj = 0, and only the terms where MiMj = M2

i

for i = j are non-zero and contribute to the susceptibility. By incorporating Eq. (20), the
susceptibility is simplified to a sum over the cluster sizes |C| [9].

χ = 1
Ld

〈∑
C

|C|2
〉

. (22)

2.2 Solution of the Two-Dimensional Ising Model
The solution of the two-dimensional Ising model on a square lattice was first discovered by
Onsager in 1944. While the solution of the one-dimensional Ising model is relatively straight-
forward, the solution to the two-dimensional model is significantly more complex. In the two-
dimensional Ising model, the spins are denoted by sx, with the index x representing a node on
a lattice of size L2. The Hamiltonian can be expressed as

H[s] = −J

∑
⟨xy⟩

sxsy +
∑
⟨xz⟩

sxsz

 (23)

where the external magnetic field is set to zero, B = 0. Similar to the one-dimensional case,
the Hamiltonian for the two-dimensional Ising model can be reformulated as:

H[s] =
L∑

i=1
(E(ui, ui+1) + E(ui)), E(ui, ui+1) = −J

L∑
x=1

sxsy (24)

using the notation ui = {s1, s2, ..., sL} to represent the set of all spins in a column. Therefore,
E(ui, ui+1) represents the energy between column i and its neighboring column i+1, and E(ui)
represents the energy of column i. As in the one-dimensional model, a transfer matrix t can be
defined, with elements given by

⟨ui|t|ui+1⟩ = e−β(E(ui,ui+1)+ 1
2 E(ui)+ 1

2 E(ui+1)). (25)

The partition function for a lattice with periodic boundary conditions is computed by taking
the trace of the transfer matrix to the power of L [2]:

Z = Tr[tL] (26)

11



2 Ising Model

The two-dimensional Ising model exhibits two distinct phases: the low-temperature phase,
where the spins are ordered, resulting in a spontaneous magnetization, and the high-temperature
phase, characterized by disordered, chaotic spin behavior. The critical temperature for the phase
transition in the two-dimensional Ising model on a square lattice can be determined through
the duality between the partition functions of the low and high-temperature phases. The du-
ality condition equation can be determined with the dual lattice. We introduce bond variables
b̂⟨w, x⟩, which are defined as the product of two neighboring spins sx and sy:

b̂⟨wx⟩ = sxsy = ±1. (27)

Note that these bond variables are distinct from the cluster bond variables introduced in
Section 2.1.1. We now define an elementary lattice square with vertices w, x, y, z, and associate
four bond variables with it:

b̂⟨wx⟩b̂⟨xy⟩b̂⟨yz⟩b̂⟨zw⟩ = s2
ws2

xs2
ys2

z = 1. (28)

This identity holds since the spins can only take the values sx = ±1. The constraint of
eq. (28) can be reformulated using a new variable m□ for each elementary lattice square:

δb̂⟨wx⟩b̂⟨xy⟩b̂⟨yz⟩b̂⟨zw⟩=1 = 1
2

1∑
m□=0

(
b̂⟨wx⟩b̂⟨xy⟩b̂⟨yz⟩b̂⟨zw⟩

)m□
. (29)

The newly introduced variable m□ can be interpreted as the spin variable of the dual lattice
sx̃ = 1−2m□, with x̃ positioned at the centers of the elementary squares. The partition function

Z =
∏
x

∑
sx=±1

∏
⟨xy⟩

eβJsxsy (30)

can be reformulated using the newly introduced bond variables as:

Z =
∏
x

∑
b̂⟨xy⟩=±1

∏
⟨wx⟩

eβJb̂⟨xy⟩
∏
□

1
2

1∑
m□=0

(
b̂⟨wx⟩b̂⟨xy⟩b̂⟨yz⟩b̂⟨zw⟩

)m□ (31)

where ∏□ denotes the product over all elementary squares. By summing over the bond variable
b̂⟨x,y⟩ on the original lattice, an interaction between the dual spins sx̃ and sỹ, which share the
bond ⟨x, y⟩, is introduced:

∑
b̂⟨xy⟩=±1

eβJb̂⟨xy⟩ b̂
m□x̃

+m□ỹ

⟨xy⟩ = e−β̃Ẽ(sx̃,sỹ). (32)

The Hamiltonian function of the dual lattice can be defined as:

H̃[s] =
∑
⟨xy⟩

Ẽ(sx̃, sỹ), (33)

The Boltzmann factors, representing all possible combinations of two neighboring spins on
the dual lattice, are calculated thus:

e−β̃Ẽ(1,1) = e−β̃Ẽ(−1,−1) = 2 cosh(βJ) (34)
e−β̃Ẽ(−1,1) = e−β̃Ẽ(1,−1) = 2 sinh(βJ).
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2 Ising Model

By comparing the ratio of the Boltzmann factors of the original Ising model (see eq. (11)):

e−βE(1,−1)

e−βE(1,1) = e−2βJ (35)

with the ratio of the dual Boltzmann factors:

e−β̃Ẽ(1,−1)

e−β̃Ẽ(1,1)
= tanh(βJ), (36)

we derive the duality condition:
tanh(βcJ) = e−2βcJ (37)

where βc = 1/(kBTc). The solution for the critical inverse temperature βc, times the coupling
strength J , is then given by [6]

βcJ = 1
2 ln(1 +

√
2). (38)

13



3 Monte Carlo Simulations

3 Monte Carlo Simulations
By carrying out Monte Carlo simulations, one seeks to understand the time evolution of a system
not through deterministic methods, such as Newtonian equations of motion, but via stochastic
processes utilizing a sequence of random numbers. The results of a Monte Carlo simulation
employing distinct sequences of random numbers converge within statistical errors.Within the
framework of the Ising model, the Monte Carlo algorithm generates a series of spin configura-
tions [s(n)], each dependent on its predecessor [s(n−1)]. This iterative process results in a Markov
chain of spin configurations:

[s(1)] → [s(2)] → . . . → [s(N)]. (39)
The initial spin configuration [s(1)] is selected arbitrarily. Subsequent application of the al-

gorithm for a sufficient number of iterations M allows the spin system to achieve equilibrium,
which is notably independent of the initial configuration. It is critical to recognize that only
configurations after the equilibration configuration, denoted as [S(M)], are viable for the com-
putation of physical observables.

To estimate an observable in the simulated system, one must compute the ensemble average
of its values across all configurations post-equilibration:

⟨O⟩ = lim
N→∞

1
N − M

N∑
n=M+1

O[s(n)]. (40)

In the limit N → ∞, the estimation of the observable O approaches its exact value. The
statistical error associated with a finite number of iterations beyond equilibration, N − M ,
diminishes in proportion to 1/

√
N − M . Consequently, to reduce the statistical error by a

factor of two, the duration of the Monte Carlo simulation must be quadrupled. Two fundamental
principles of Monte Carlo methods are ergodicity and detailed balance [9]. Ergodicity ensures
that the Monte Carlo method is capable of accessing every possible spin configuration from
any arbitrary starting point. This principle is vital for the equivalence of time averages and
ensemble averages, facilitating the statistical analysis of system properties. Detailed balance
states that the transition probability p([sn] → [s(n+1)]) from one spin configuration to another
within the Markov chain is equal to the transition probability p([s(n+1)] → [s(n)]) for the reverse
process. This can be mathematically expressed as:

p([s(n)] → [s(n+1)]) = p([s(n+1)] → [s(n)]). (41)

The normalization condition for transition probabilities is given by:∑
[s(n+1)]

p([s(n)] → [s(n+1)]) = 1. (42)

The detailed balance condition implies that the system evolves towards a stationary state
characterized by the largest eigenvalue of the transition probability matrix. Ergodicity ensures
the existence of this eigenvalue, thereby guaranteeing the uniqueness of the equilibrium state
[10]. To align the equilibrium distribution with the canonical Boltzmann distribution p[s] =
e−βH[s], it can be demonstrated that this distribution is indeed an eigenvector of the transition
probability matrix p([s(n)] → [s(n+1)]):∑

[s(n)]
e−βH[s(n)]p([s(n)] → [s(n+1)]) =

∑
[S(n)]

e−βH[s(n+1)]p([s(n+1)] → [s(n)])

= e−βH[s(n+1)] ∑
[Sn]

p([s(n+1)] → [s(n)]) = e−βH[s(n+1)].
(43)
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3 Monte Carlo Simulations

This relationship ensures that the Monte Carlo simulation, when converged to equilibrium,
reflects the statistical mechanics of the system under the Boltzmann distribution [9].

3.1 Swendsen-Wang Algorithm
The Swendsen-Wang algorithm is a cluster-flipping method proposed by Swendsen and Wang
[11]. This algorithm creates clusters of aligned spins by probabilistically forming bonds between
neighboring parallel spins, with the probability determined by Boltzmann factors, as outlined
in Chapter 2.1.1.

The bond formation probability between two parallel spins is given by:

Pbond = e−βE(s,s,1)

e−βE(s,s) = eβJ − e−βJ

eβJ
= 1 − e−2βJ . (44)

The expression e−βE(s,s,1) represents the Boltzmann weight for the scenario where a bond is
active between two parallel spins, while e−βE(s,s) corresponds to the overall weight when two
spins are parallel. In this algorithm, spins which are connected to other spins trough bonds form
clusters. The procedure ensures that ultimately, each spin belongs to exactly one cluster. Each
cluster is then flipped with a probability of 1

2 . At temperatures above the critical temperature,
the probability is high that no bonds will form, leading to a completely random configuration
as no clusters can form. This characteristic ensures the algorithm’s ergodicity, meaning it can
potentially explore all possible spin configurations.
To demonstrate detailed balance, it suffices to consider two neighboring spins. Detailed balance
requires that the transition from a state with an active bond to one without must be equally
probable as the reverse transition from a state with a deactivated bond to a state with an
activated bond. Starting with an active bond e−βE(s,s,1), the probability that two spins remain
parallel after a cluster flip is 1, since they belong to the same cluster. The probability that
no bond is reformed is 1 − Pbond. In the case of two initially non-bonded spins, there are
two scenarios. If the spins are antiparallel e−βE(s,−s,0), the probability of them aligning after a
cluster flip is 1

2 , followed by the formation of a bond with probability Pbond. For two parallel
spins without an initial bond e−βE(s,s,0), the likelihood of them remaining parallel after a flip is
1
2 , with a subsequent Pbond chance of bond formation. The detailed balance condition implies:

e−βE(s,s,1)(1 − Pbond) = e−βE(s,−s,0) 1
2Pbond + e−βE(s,s,0) 1

2Pbond =⇒

e−βJ − e−3βJ = e−βJ − e−3βJ .
(45)

which, upon simplification, validates the detailed balance principle for the Swendsen-Wang al-
gorithm. At high temperatures, the clusters formed tend to be small, while at low temperatures,
large clusters of aligned spins emerge due to the high bond-formation probability, leading to an
oscillation between similar looking spin configurations since after an cluster flip the spins tent to
be again in the same cluster. Near the critical temperature Tc, a diverse range of cluster sizes are
generated which leads to significant configurational changes, trough that the hazard of critical
slowing down is reduced. Critical slowing down refers to the phenomenon where the relaxation
time,the time it takes for a system to return to equilibrium after a disturbance,increases dramat-
ically as the system approaches a critical point of a phase transition [12]. The implementation
of the Swendsen-Wang algorithm proceeds as follows:
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3 Monte Carlo Simulations

Swendsen-Wang algorithm for the Ising model

1. Initialise a spin configuration with up (+1) and down (-1) spins.

2. Choose a spin and add all parallel neighbors with probability Pbond = 1 − e−2βJ to
the cluster.

3. Add all neighbors of the newly added spins to the cluster with probability Pbond.

4. Repeat step 3 until no new spins are added to the cluster.

5. Repeat steps 2 to 4 for all spins on the lattice that are not part of any cluster.

6. Once all clusters are identified, flip each cluster with a 50% probability. This means
that all spins in a given cluster are flipped simultaneously, either from +1 to -1 or
from -1 to +1.

7. Return to step 2

A visualization of the two-dimensional Ising model, simulated using the Swendsen-Wang
algorithm on a square lattice with periodic boundary conditions, is presented in Figure 2. This
figure illustrates the balance between the system’s energetic interactions, represented by spin
clusters, and thermal fluctuations, which is a typical behavior of the system at the critical
temperature.

((a)) Spin configuration 1. ((b)) Spin configuration 2.

Figure 2: Two spin configurations generated using the Swendsen-Wang algorithm after 10, 000
thermalization sweeps. The lattice size is L = 100, containing L2 spins. The simulation
was conducted at the critical temperature Tc.
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4 Renormalisation Group

4 Renormalisation Group
The key aspect describing the renormalization group is that it represents a continuous family
of transformations of the coupling constants with a corresponding change in the length scale of
the physical system. For example, if one wants to study a physical system at a certain length
scale, it is convenient to consider only the degrees of freedom that are important at this length
scale. This is exactly what the renormalization group does, using the transformation of the
couplings. This transformation leads to a family of Hamiltonians that are associated with the
degrees of freedom at a given length scale. Starting with a Hamiltonian on a critical surface
at a certain length scale, for example, the lattice spacing a, and starting to rescale the system
iteratively with a → a′ = ab, the couplings of the Hamiltonian get amplified or deamplified
until the fixed-point Hamiltonian is reached, where the couplings stay constant under further
iterations. If a coupling gets amplified, it is a relevant coupling; otherwise, it is an irrelevant
coupling. This amplification or deamplification leads to the principle of universality, which
means that, for example, two different magnets with different atoms may have the same fixed-
point Hamiltonian.

The renormalization group is not a group in a mathematical sense because the transforma-
tions are not invertible but it has the property of a semi group [6].

4.1 Renormalization of the Ising Model
First, let’s start with an arbitrary Hamiltonian on a d-dimensional lattice H[sx], where sx are
the degrees of freedom (spins) placed at the lattice sites with lattice spacing a. The partition
function of the system is given by

Z =
∑
[sx]

e−H[sx]. (46)

The renormalization group transformations are transformations that block spins sx in given
disjoint blocking areas Ωx′ on the lattice together and assign a new coarse spin variable s′

x′ to
each area, so that these new spins are the sites of the new resulting coarse lattice. These trans-
formations are defined through the blocking kernel T (sx; x ∈ Ωx′ , s′

x′), which can be interpreted
as the conditional probability that the original spin sx in the block Ωx′ results in the coarse
spin s′

x′ :
p(sx|s′

x′ , x ∈ Ωx′) ≥ 0. (47)

Consequently, the blocking kernel must fulfill the following equation:∑
[s′

x′ ]
T (sx; x ∈ Ωx′ , s′

x′) = 1. (48)

The probability for a given spin configuration is given by

P ([sx]) = e−H[sx] (49)

Thus, we can define the Hamiltonian of the new coarse lattice H′[s′
x′ ] with the probability of a

given spin configuration on the original lattice and with the conditional probability from Eq.
(47) as

e−H′[s′
x′ ] =

∑
[sx]

∏
blocks

T (sx; x ∈ Ωx′ , s′
x′)e−H[sx]. (50)
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4 Renormalisation Group

Through the above conditions, the partition function Z ′ of the coarse Hamiltonian on the
coarse lattice is identical to the partition function of the original Hamiltonian.

Z ′ =
∑
[s′

x′ ]
e−H′[s′

x′ ] =
∑
[s′

x′ ]

∑
{sx}

∏
blocks

T (sx; x ∈ Ωx′ , s′
x′)e−H[sx] =

∑
[sx]

e−H[sx] = Z. (51)

The invariance of the partition function under renormalization transformations also applies
to any arbitrary expectation value of a function X dependent on the spin variables s′

x. The
outcome is consistent, regardless of whether the expectation value of X is calculated using the
original Hamiltonian H[sx] or the transformed Hamiltonian H′[s′

x′ ].

⟨X⟩ = 1
Z ′

∑
[s′

x′ ]
X[s′

x′ ]e−H′[s′
x′ ] = 1

Z

∑
[sx]

X[s′
x′ ]e−H[sx] (52)

There are various types of blocking kernels, which can primarily be categorized into determinis-
tic and probabilistic types. However, in the case of the renormalization of the Ising model, they
all block areas Ωx′ with fine spins sx together and assign a new spin to the block s′

x′ . The case
of a factor b blocking, which means that the lattice spacing of the fine lattice a is transformed
to a coarse lattice a → ab with b > 1, is represented in Figure 3.

Ωx′

a

a · b

Figure 3: Original lattice with a lattice spacing a and with a blocking region Ωx′ of 4 spins sx.
The four spins sx within Ωx′ are blocked to a coarse spin s′

x′ in the center of the
block. The coarse lattice has lattice spacing a · b (In this case b = 2).

In the case of a deterministic blocking kernel, the new spin variable becomes a function of
several original spin variables:

s′
x′ = f(sx), x ∈ Ωx′ . (53)

This transformation can be repeated multiple times. If we block the original lattice n times,
the equation above becomes [13]:

sn
xn = f(sn−1

xn−1), xn−1 ∈ Ωxn . (54)

Two common deterministic renormalization techniques are: (i) decimation

s′
x′ = sx, x ∈ Ωx′ . (55)
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4 Renormalisation Group

where the value of an original spin determines the coarse spin; and (ii) majority rule

s′
x′ = c

∑
x∈Ωx′

sx. (56)

where c is the renormalization constant, which ensures the correct value of the coarse spin s′
x′

when the number of spins sx in a block Ωx′ is even [13]. Note that these transformations are
irreversible, since it is not possible to determine the values of sx by knowing just the values
s′

x′ .
Furthermore, there are blocking kernels which define the coarse spin s′

x′ of a blocking area
probabilistically. One of them is the mostly used blocking kernel in this master thesis:

T (sx; x ∈ Ωx′ , s′
x′) = A + 1 − 2A

N

∑
x∈Ωx′

δsx,s′
x′

. (57)

where N is the number of spins sx in the blocking area Ωx′ , and A is the probability that the
coarse spin s′

x′ is not aligned with any of the fine spins in the blocking area. Note that this
blocking kernel also has the property of a semigroup so that blocking with the above kernel
followed by the blocking of the form

T (s′
x′ ; x′ ∈ Ωx′′ , s′′

x′′) = B + 1 − 2B

M

∑
x′∈Ωx′′

δs′
x′ ,s

′′
x′′

(58)

is equivalent to the blocking kernel:

T (sx; x ∈ Ωx′′ , s′′
x′′) = A′ + 1 − 2A′

NM

∑
x∈Ωx′′

δsx,s′′
x′′

(59)

where A′ = A + B − 2AB. This property of the blocking kernel is extremely useful since several
blocking steps can be performed in just one step. By blocking n steps in just one large step,
the probability that the coarse spin sn

xn is not aligned with any original spin becomes

An = 1
2 − 1

2

n∏
i=1

(1 − 2Ai) (60)

where A = A1, B = A2, etc., are the probabilities that no spin is aligned from the smaller
blocking steps.
Starting with the Hamiltonian H[s] of the Ising model, which includes only nearest-neighbor
interactions with coupling strength g = βJ , the renormalized Hamiltonian H′[s′] could also
contain next-to-nearest neighbor interactions. Therefore, it is essential not to limit the de-
scription of the Hamiltonian to a single coupling constant, as new couplings may emerge at
each renormalization step. Accordingly, we must consider the entire set of coupling constants
{g} = (g, g2, . . .) that respect the symmetry of the model and the renormalization group (RG)
process. This RG process transforms these couplings across steps {g} → {g′} → {g′′} . . ., driv-
ing the couplings along a trajectory in their manifold. It’s important to rescale the correlation
length ξ with each new lattice spacing, adjusting as follows:

ξ(g) = ξ(g′)
b

(61)

This trajectory can stabilize at a fixed point in the coupling space, where a renormalization
transformation leaves the coupling constants unchanged, g∗ → g∗. At such fixed points, the
correlation length behaves as:

ξ(g∗) = ξ(g∗)
b

(62)
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4 Renormalisation Group

resulting in its reduction or divergence. Fixed points are categorized into critical points, where
the correlation length becomes infinite (ξ = ∞), and trivial points, where it reduces to zero
(ξ = 0). Moreover, fixed points can be attractive, drawing nearby couplings towards them, or
repulsive, pushing couplings away.

A

B

Figure 4: Two fixed points in a plane. Fixed point A represents a repulsive fixed point where the
renormalization flow of the couplings (indicated with the arrow lines) points towards
it, but some of it flows out of the fixed point. Fixed point B is attractive since the
flow of the couplings points all to the point and nothing flows out.

In the space of coupling constants {g} = (g1, g2, . . .), there exists a hypersurface C, at which
the correlation length is infinite, termed the critical surface. The critical surface also acts as
a basin of attraction for the critical point g∗. This implies that starting at a point on the
critical surface (for example, the Ising Hamiltonian at critical temperature) and performing
renormalization steps will cause the couplings to evolve within the critical surface towards the
fixed point g∗.

This fixed point is notable as all theories with critical points on this surface and within the
basin of attraction of g∗ exhibit identical continuum physical behavior, characterized by the
Hamiltonian H(g∗). This places them within the same universality class of Hamiltonians. Note
that starting at a point that is infinitesimally outside of the critical surface and beginning to
renormalize, the flow of the couplings moves away from the fixed point along the renormalized
trajectories. [6] [14].
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4 Renormalisation Group

g

ĝ g∗

g1

g2

C

Figure 5: Consider the critical surface C in the space of coupling constants, with two points g
and ĝ on it. Initiating the renormalization procedure at these points leads to a flow
towards the fixed point g∗, which is also located on the critical surface. Points located
outside of the critical surface (g1 and g2) will flow away from the surface under the
application of renormalization steps.
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5 Exact Renormalization Group Transformation

5 Exact Renormalization Group Transformation
5.1 Renormalization Group Decimation
Let’s begin by examining a straightforward renormalization transformation applied to the one-
dimensional Ising model, known as decimation. This process involves integrating out every
alternate spin on the original lattice L, resulting in the formation of a new lattice L′.

Original lattice L

Coarse lattice L′

We can now proceed to compute the transfer matrix t′, previously defined in eq. (11). This
computation incorporates the updated Boltzmann weights associated with the new lattice L′.

t′ =
(

e−βE′(+1,+1) e−βE′(+1,−1)

e−βE′(−1,+1) e−βE′(−1,−1)

)
(63)

This matrix accounts for the various possible interactions between neighboring spins of the
new lattice.

↑ ↑
e−βE′(+1,+1) = e2βJeβB + e−2βJe−βB = 2 cosh(2βJ + βB)

↑ ↓
e−βE′(+1,−1) = eβJe−βJeβB + e−βJeβJe−βB = 2 cosh(βB)

↓ ↓
e−βE′(−1,−1) = e−2βJeβB + e2βJe−βB = 2 cosh(2βJ − βB) (64)

We can thus identify the transfer matrix t′ for the coarse lattice L′ as follows:

t′ =
(

2 cosh(2βJ + βB) 2 cosh(βB)
2 cosh(βB) 2 cosh(2βJ − βB)

)
, (65)

where the eigenvalues are:

λ′
± = 2 cosh(βB) cosh(2βJ) ±

√
3 − cosh(4βJ) + cosh(2βB) (1 + cosh(4βJ)). (66)

Since the decimation renormalization transformation integrates out every second spin of the
original lattice, the correlation length of the coarse lattice ξ′ must be twice as long as the
original one, ξ′ = 2ξ, and indeed this is the case:

ln
(

λ2
−

λ2
+

)
= 2 ln

(
λ−

λ+

)
= ln

(
λ′

−
λ′

+

)
= 2a

ξ
(67)

To derive the new coupling constant J ′ and the magnetic field B′, such that the transfer
matrix of the coarse lattice L′ (and consequently the new Hamiltonian H ′), retains the same
form as the original Hamiltonian H, we need to establish two equations that map J → J ′ and
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5 Exact Renormalization Group Transformation

B → B′. These equations can be formulated by comparing the ratios of the transfer matrix
elements of the original Ising Model with those of the renormalized system, ensuring they are
represented in a consistent manner,

e−βE′(+1,+1)

e−βE′(+1,−1) = 2 cosh(2βJ + βB)
2 cosh(βB)

!= eβ(2J ′+B′),

e−βE′(−1,−1)

e−βE′(+1,−1) = 2 cosh(2βJ − βB)
2 cosh(βB)

!= eβ(2J ′−B′). (68)

The system of eq.(68) enable us to determine the values for βJ ′ and βB′. By solving this
equation, we can compute the renormalized coupling constants of the Hamiltonian subsequent
to a single renormalization step. Furthermore, due to the semigroup property of the renormal-
ization group, it is worth noting that by iteratively applying this equation, we can effectively
simulate multiple renormalization steps, thereby exploring the system’s behavior over multiple
renormalization transformations,

βJ ′ = 1
4 ln

(
cosh (β(2J − B)) cosh (β(2J + B))

cosh (βB)

)
,

βB′ = 1
2 ln

(
cosh (β(2J + B))

cosh (βB)

)
. (69)

5.2 Renormalization Group Blocking
Next, we consider the blocking renormalization transformation. This transformation involves
grouping two original spins into a single coarse-grained spin. The process is illustrated in the
diagram below:

Original lattice L

Coarse lattice L′

In this transformation, interactions within a block of the original lattice L and the coarse
lattice L′ are represented by triangles. Considering the presence of an external magnetic field
B, the Boltzmann weights between the lattices can assume four different values. This variation
is due to the binary nature of the original spins (up or down) and the influence of the magnetic
field, which affects the Boltzmann weights differently depending on whether the coarse spin is
oriented up or down.

↑

↑ = x

↑

↓ = y

↓

↓ = x̂

↓

↑ = ŷ (70)
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5 Exact Renormalization Group Transformation

Within the blocking triangle, there exist six distinct spin configurations, each associated with
a unique Boltzmann weight. These weights depend on the Boltzmann weights of the two initial
Ising spins on the fine lattice, as specified by the entries of the transfer matrix elements in
eq. (11). Additionally, they depend also on the weights A, Â, C ∈ [0, 1] which represent the
likelihood that the coarse spin is not aligned with the two original spins. In the absence of an
external magnetic field, it is convenient to set A = Â and C = 1

2 .

↑ ↑
↓ Aeβ(J+B) = y2

↑ ↑

↑
(1 − A)eβ(J+B) = x2

↑ ↓
↓ Ce−βJ = yx̂

↑ ↓

↑
(1 − C)e−βJ = xŷ

↓ ↓
↓ Âeβ(J−B) = x̂2

↓ ↓

↑
(1 − Â)eβ(J−B) = ŷ2

(71)

Given the presence of six equations but seven parameters, C remains a free parameter,
allowing the system of equations to be solved with the remaining parameters expressed as
functions of C. Similar to the renormalization decimation transformation, it is possible to
calculate the Boltzmann weights of two neighboring spins on the renormalized lattice,

↑ ↑
e−βE′(+1,+1) = x2eβ(J+B) + 2xŷe−βJ + ŷ2eβ(J−B)

= (1 − A)e2β(J+B) + 2(1 − C)e−2βJ + (1 − Â)eβ(J−B),

↑ ↓
e−βE′(+1,−1) = e−βE′(−1,+1) = xyeβ(J+B) + (yŷ + xx̂)e−βJ + x̂ŷeβ(J−B)

=
√

A(1 − A)e2β(J+B) +
√

A(1 − Â)

+
√

Â(1 − A) +
√

Â(1 − Â)e2β(J−B),

↓ ↓
e−βE′(−1,−1) = y2eβ(J+B) + 2yx̂e−βJ + x̂2eβ(J−B)

= Ae2β(J+B) + 2Ce−2βJ + Âeβ(J−B).

(72)

The probabilities A and Â are defined in terms of the parameter C as follows:

A = 1
2e−4βJ

(
−1 + 2C + e4βJ −

√
−1 + e4βJ

√
−1 + 4C − 4C2 + e4βJ

)
,

Â = 1
2e−4βJ

(
−1 + 2C + e4βJ +

√
−1 + e4βJ

√
−1 + 4C − 4C2 + e4βJ

)
. (73)

To find the renormalized couplings J ′ and B′, the same process as in decimation is applied.
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5 Exact Renormalization Group Transformation

e−βE′(+1,+1)

e−βE′(+1,−1)
!= eβ(2J ′+B′)

e−βE′(−1,−1)

e−βE′(+1,−1)
!= eβ(2J ′−B′) (74)

Once the equations are solved for J ′ and B′ , the solution can be iteratively applied to observe
the evolution of the coupling constants J and B at each stage of the renormalization process,
as illustrated in Figure 6. The chosen renormalization transformation involves a factor-two
blocking, implying that the lattice spacing of the coarse lattice is 2a if the original lattice spacing
is a. Consequently, the correlation length ξ is effectively halved, transforming as ξ/a → ξ/(2a),
after each renormalization step. As shown in Figure 6, the coupling constant βJ approaches
zero after a sufficient number of renormalization steps. In contrast, the behavior of the coupling
constant βB varies, influenced by the parameter C.

Figure 6: Flow of the couplings βJ and βB for different values of C and with starting points
βJ = 2 and βB = 1.

Next, we consider the blocking renormalization transformations in the absence of an external
magnetic field, i.e., B = 0. As mentioned before, this condition simplifies the triangular blocking
Boltzmann weights, making it natural to set A = Â and C = 1

2 . Consequently, we obtain a
general blocking kernel of the form :

T (sx; x ∈ Ωx′ , s′
x′) = A + 1 − 2A

N

∑
x∈Ωx′

δsx,s′
x′

(75)

In this blocking transformation, the variable N , denoting the total number of original spins
within a renormalization block, is set to N = 2. Without an external magnetic field, the
Boltzmann weights for interactions between spins on the original and the coarse lattice are
characterized by just two distinct values. These weights differ, based on whether the spins from
the original and coarse lattices are parallel or not,

25



5 Exact Renormalization Group Transformation

↑

↑
= x,

↑

↓
= y. (76)

With these simplifications, the blocking weights can be reduced to just three different cases:

↑ ↑
↓ AeβJ = y2

↑ ↑

↑
(1 − A)eβJ = x2

↑ ↓
↓ 1

2e−βJ = xy (77)

Again we factorized the Boltzmann weights of the original lattice with the probability that
the coarse spin is not parallel too the two fine spins, into 2-spin interactions x, y between the
fine and the coarse lattice. By solving this system of equations one finds a simple solution for
A as a function of the coupling βJ

A = 1
2 − 1

2

√
1 − e−4βJ . (78)

In the renormalized system, the Boltzmann weights are simplified to just two independent
scenarios: one where the two renormalized spins are parallel, and another where they are an-
tiparallel.

↑ ↑
e−βE′(+1,+1) = e−βE′(−1,−1) = (x2 + y2)eβJ + 2xye−βJ

= e−2βJ + e2βJ = 2 cosh(2βJ),
↑ ↓

e−βE′(+1,−1) = e−βE′(−1,+1) = 2xyeβJ + (x2 + y2)e−βJ

= 2.

(79)

The renormalization group blocking approach, utilizing the blocking kernel defined in eq.( 75),
yields renormalized Boltzmann weights identical to those obtained through renormalization
group decimation, as outlined in eq.( 65), for a vanishing magnetic field B = 0. The evolution
of the coupling constant J after each renormalization step can be calculated using the following
equation:

e−βE′(+1,+1)

e−βE′(+1,−1) = cosh (2βJ) != e2βJ ′ (80)

To determine the fixed point of the recursive equation, one must examine the equation
cosh(2βJ∗) = e2βJ∗ . This equation has two solutions:

βJ∗ = 0 (for T = ∞) and βJ∗ → ∞ (for T = 0). (81)
As illustrated in Figure 7, the coupling βJ flows to the fixed point βJ∗ = 0. This indicates

that the system evolves towards a free theory with no interactions between spins. Consequently,
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5 Exact Renormalization Group Transformation

no ordered state emerges for any finite value of βJ , leading to the absence of a phase transition.
Only in the limit βJ = ∞, corresponding to a finite interaction coupling J at T = 0, do the
spins exhibit order.

Figure 7: Flow of the coupling constant βJ after several iteration steps, as described by eq.( 81),
starting from βJ = 2.

5.3 Cluster-inspired Renormalization Group
In this chapter, a cluster-inspired renormalization transformation applied to the one-dimensional
Ising model in the absence of an external magnetic field (B = 0) is discussed. This transforma-
tion is applied to the original lattice, denoted by L, where the Ising model is represented through
clusters as outlined in Chapter 2.1.1. With the cluster blocking kernel T (sx; x ∈ Ωx′ , s′

x′), we
establish bonds between the lattices after renormalization, enabling the formation of spin clus-
ters that span not only the original lattice but also the renormalized counterparts (L′, L′′, . . .).
The geometric constructs resulting from these cluster-inspired transformations are shown in
Figure 8.

Original lattice L

lattice L′

lattice L′′

Figure 8: Geometry of the cluster-inspired renormalization group. The thick green (gray) lines
represent kernel bonds that span through the renormalized lattices and the blue
(black) thick lines represent the Ising-bonds between spins on the original lattice.

Initially, we must specify the allowed bonds within the blocking kernel T (sx; x ∈ Ωx′ , s′
x′).

By examining the structure of a single renormalization block, which forms a triangle with two
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fine spins and one coarse spin, it becomes apparent that we should consider various scenarios
for the presence of a bond of the blocking kernel within the renormalization triangle. These
scenarios, along with their respective Boltzmann weights, are outlined below.

= A = B = C

= D = E = F (82)

Figure 9: Representation of all possible blocking kernels using blocking triangles, where the
green (gray) thick line indicates a kernel-bond between two parallel spins. The param-
eters (A, B, C, D, E, F ) ∈ [0, 1] denote the corresponding weights for each blocking
kernel.

The blocking kernel T (sx; x ∈ Ωx′ , s′
x′) must satisfy the conditions T (↑↑, ↓) + T (↑↑, ↑) = 1

and T (↑↓, ↓) + T (↑↓, ↑) = 1, where the arrows represent the spin orientations. In the scenario
where the fine spins are aligned upwards and the coarse spin is directed downwards, denoted
as T (↑↑, ↓), the weights A and C are assigned to this configuration. This allocation is justified
because a bond can only be established between parallel spins. Since the fine spins are parallel,
a kernel bond may or may not be established; however, since the coarse spin is antiparallel
to the fine spins, no bond between them can be formed. Similar considerations lead to the
following equations:

T (↑↑, ↓) + T (↑↑, ↑) = 2(A + B + C + D) + E + F = 1
T (↑↓, ↓) + T (↑↓, ↑) = 2(A + B) = 1

(83)

Solving the second equation yields B = 1
2 − A, which implies 1 + 2(C + D) + E + F = 1.

This implies that C = D = E = F = 0, given that A, B, C, D, E, F ∈ [0, 1]. Bonds between
spins, implied through the blocking kernel, are therefore only permitted between one fine spin
and one coarse spin with the corresponding weight 1

2 − A. In the scenario where no kernel
bonds are formed, the Boltzmann weight assigned is A. If A were set to zero (A = 0), there
would always be activated bonds between renormalized lattices. With the various weights of the
allowed blocking kernel T (si, s′

i) defined, it is possible to determine the Boltzmann weights of
the blocking triangle. These weights are constructed from the blocking kernel weight A and the
weights of the Ising model on the original lattice, W1 and W0. Here, W1 represents the weight
when a bond is active between two parallel neighboring spins, given by W1 = eβJ − e−βJ , and
W0 is the Boltzmann weight when no bond is active, given by W0 = e−βJ as discussed in Section
2.1.1.
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G1 = 2W0

(1
2 − A

)
G2 = 2W0

(1
2 − A

)
G3 = W1

(1
2 − A

)

G4 = W1

(1
2 − A

)
G5 = 2W1A G6 = 4W0A

(84)

Figure 10: Boltzmann weights of all possible combinations within a blocking area of the cluster-
inspired renormalization. The green (gray) thick lines represent the kernel-bonds,
and the blue (black) thick lines represent the Ising-bonds between spins.

With the Boltzmann weights from Figure 10, it is now possible to calculate the Boltzmann
weight W ′

1 for when a bond is formed on the renormalized lattice L′. This weight can be derived
from all possible combinations of the weights from the triangular blocking areas represented
in Figure 10 and the Ising-bonds between two neighboring triangles. Note that a bond on the
renormalized lattice is active if the two corresponding spins are in the same cluster, connected
through both the kernel and Ising-bonds. One such combination is depicted in Figure 11.

W ′
1

Figure 11: Possible configuration that leads to a bond W ′
1 between two neighboring spins on

the renormalized lattice

To generate all possible combinations that form a bond on the renormalized lattice, the
approach of a transfer matrix, Mall, is implemented. The entries of this matrix contains the
weights of all possible configurations of the triangular blocking areas of eq.(84). It is important
to note that the Boltzmann weight of a blocking triangle always contributes to two bonds, as
illustrated in Figure 12. Consequently, one must take the square root of the Boltzmann weights
of the triangles.
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W ′
1

(1) W ′
1

(2)

Figure 12: A chain consisting of two bonds, W ′
1

(1) and W 1
(1), featuring an overlapping blocking

triangle at the center.

The entries of the transfer matrix Mall can be calculated using the following formula:

Mallij
=
√

GiGj. (85)

To construct the transfer matrix Mb, which contains only combinations of blocking areas
that lead to a bond on the renormalized lattice, all other combinations must be set to zero.

Mb =



0 0 0 0 0 0
2W1

(
1
2 − A

)
0

√
2W1W0

(
1
2 − A

) √
2W1W0

(
1
2 − A

)
0 0

√
2W1W0

(
1
2 − A

)
0 W1

(
1
2 − A

)
W1

(
1
2 − A

)
0 0

√
2W1W0

(
1
2 − A

)
0 W1

(
1
2 − A

)
W1

(
1
2 − A

)
0 0

0 0 0 0 0 0
0 0 0 0 0 0


(86)

The Boltzmann weight for a bond of the renormalized system can be calculated with the
transfer matrix and with the weight that the two blocking triangles are connected with an
Ising-bond W1.

W ′
1 = W1Mb (87)

Similarly, we can determine the transfer matrix Mnb, which represents the scenario where no
bond is formed between two spins on the coarse lattice.

Mnb =



2
(

1
2 − A

)
W0 2

(
1
2 − A

)
W0

(
1
2 − A

)√
2W1W0

(
1
2 − A

)√
2W1W0 2

√(
1
2 − A

)
W0AW1 2

√
2
(

1
2 − A

)
AW0

0 2
(

1
2 − A

)
W0 0 0 2

√(
1
2 − A

)
W0AW1 2

√
2
(

1
2 − A

)
AW0

0
(

1
2 − A

)√
2W1W0 0 0

√
2
(

1
2 − A

)
AW1 2

√(
1
2 − A

)
AW0W1

0
(

1
2 − A

)√
2W1W0 0 0

√
2
(

1
2 − A

)
AW1 2

√(
1
2 − A

)
AW0W1

2
√(

1
2 − A

)
W0AW1 2

√(
1
2 − A

)
W0AW1

√
2
(

1
2 − A

)
AW1

√
2
(

1
2 − A

)
AW1 2AW1 2A

√
2W0W1

2
√

2
(

1
2 − A

)
AW0 2

√
2
(

1
2 − A

)
AW0 2

√(
1
2 − A

)
AW0W1 2

√(
1
2 − A

)
AW0W1 2A

√
W0W1 4AW0


(88)

The final Boltzmann weight in the absence of activated bonds is given by:

W ′
0 = W0Mall + W1

2 Mnb (89)

Where W0 is the Boltzmann weight if no Ising-bond is active and the matrix Mall contains
all combinations of the triangular blocking weights. In order to calculate the partition function
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5 Exact Renormalization Group Transformation

of a lattice without periodic boundary conditions, one needs to compensate for the missing
Boltzmann weights of the boundary. This adjustment is achieved through the introduction of
matrices Mfirst and Mlast. These matrices contain the square root of the Boltzmann weights
of eq.( 84) and and are applied element-wise to the entries of the bond W1 and no-bond W0
matrix. The partition function of the renormalized system Z ′ can now be expressed as

Z ′ =
∑
{b}

2nc

6∑
α=1

6∑
γ=1

(Mfirst)αγ

(∏
links

W{1,0}

)
αγ

(Mlast)αγ

 . (90)

Where the sum over {b} is the sum over all possible configurations of the product over all
links with activated W ′

1 or deactivated W ′
0 bonds. Each configuration weight must be multiplied

by 2nc , where nc represents the number of clusters in the given configuration. In order to
simplify the calculation of the partition function, we seek an alternative formulation similar
to equation 18, employing scalar Boltzmann weights for active (Ŵ ′

1) and inactive (Ŵ ′
0) bonds.

The challenge to do this arises from the matrix W ′
0, which not only represents the weights

for inactive bonds but also includes the weights for a "super-bond." This super-bond extends
beyond nearest neighbors, potentially connecting next-nearest neighbors or even more distant
spins, a situation arising from the condition A ̸= 0.

W ′
sb

Figure 13: Super-bond

A super-bond, denoted as W ′
sb, is illustrated in figure 13. It can form when there’s no direct

bond between spins in the original and renormalized lattices, yet a connection is established
through a chain of Ising spins. Consequently, a super-bond can span multiple spins, its length
dictated by the extent of the Ising-spin cluster.

We define the scalar Boltzmann weight of a super-bond W ′
sb(n), where n represents the

number of spins the super-bond traverses, as follows:

W ′
sb(n) = (2W1A)nM slMsr (91)

Here, Msl and Msr are matrices encoding all possible configurations at the start and end
points of a super-bond, respectively. These configurations are derived from eq. (84), reflecting
various possible arrangements of blocking triangles. The factor (2W1A)n represents the Boltz-
mann weight of a sequence of n blocking triangles, where each triangle involves an active Ising
bond without corresponding kernel bonds, bridging the gap from the super-bond’s origin to its
termination. The matrices Msl and Msr, representing the starting and ending configurations of
a super-bond, are defined as follows:
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Msl =



0 0 0 0 0 0
0 0 0 0

√
2
(

1
2 − A

)
W0 0

0 0 0 0
√(

1
2 − A

)
W1 0

0 0 0 0
√(

1
2 − A

)
W1 0

0 0 0 0 0 0
0 0 0 0 0 0


, (92)

Msr =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0√

2
(

1
2 − A

)
W0 0

√(
1
2 − A

)
W1

√
2
√(

1
2 − A

)
W1 0 0

0 0 0 0 0 0


. (93)

However, super-bonds introduce complications due to their non-local nature, necessitating
consideration of a scalar weight for every potential spin connection across the lattice. To sim-
plify, we set A = 0, eliminating super-bonds (W ′

sb = 0) and reducing the complexity of the
W ′

0,1 matrices from 6×6 to 4×4. To ascertain the scalar Boltzmann weights Ŵ ′
0,1, we examine

the transfer matrices and their diagonalization. First we see that the W ′
1 matrix has one non-

zero eigenvalue and W ′
0 has two non-zero eigenvalues. This enables us to express the occurrence

of n bonded interactions and m non-bonded interactions on the renormalized lattice as:

W ′n
1 = S1D

n
1 S−1

1

W ′m
0 = S0D

m
0 S−1

0 = S0(D(1)
0 + D

(2)
0 )mS−1

0 = S0D
(1)m
0 S−1

0 + S0D
(2)m
0 S−1

0
(94)

where D1 and D0 are diagonal matrices with the corresponding eigenvalues on the diagonal.
Since W ′

0 has two eigenvalues, the diagonal matrix can be split and written as D0 = (D(1)
0 +D

(2)
0 ).

Note that D
(1)
0 D

(2)
0 = 0 since both of these matrices have just one entry on the diagonal and

not at the same position. The S1,0 is the matrix that contains the eigenvectors and diagonalizes
the corresponding transfer matrix W ′

0,1 so that S−1WS = D. If a non-activated bond follows
an activated bond, we get a contribution from D

(1)
0 and D

(2)
0 to the whole configuration.

W ′
1W

′
0 = S1D1S

−1
1 S0D

(1)
0 S−1

0 + S1D1S
−1
1 S0D

(2)
0 S−1

0 (95)

To emphasise this relationship, we consider two distinct types of deactivated bonds, labeled
as type (1) and type (2). The transition from an activated bond to either type of deactivated
bond is characterized by distinct scalar Boltzmann weights, denoted as Ŵ ′(1),(2)

0 . These weights
are directly related to the eigenvalues of their corresponding diagonal matrices, as outlined
below:

Ŵ ′
1

n
=
(
−2 + e−2J + e2J

)n
,

Ŵ ′
0

′(1)m
=
(

1 + 1
2e−4J

√
e4J + 3e8j

)m

,

Ŵ ′
0

′(2)m
=
(

1 − 1
2e−4J

√
e4J + 3e8J

)m

.

(96)
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Furthermore, transitions involving a deactivated bond following an activated bond necessi-
tate consideration due to the interplay between the matrices D1S

−1
1 S0D

(1)
0 and D1S

−1
1 S0D

(2)
0 .

The examination of specific entries within the matrix product S−1
1 S0 is imperative, as their

interaction with D
(1)
0 and D

(2)
0 yields distinct contributions to the overall weight. These tran-

sitions are quantified by scalar weights Ŵ ′[B → NB(1),(2)], where B represents an activated
bond, and NB(1),(2) signifies a non-activated bond of either type (1) or (2):

Ŵ ′[B → NB(1)] = 1 − e2J + e−10J
√

e20J + 3e24J

2 − 2e2J
,

Ŵ ′[B → NB(2)] = 1 − e2J − e−10J
√

e20J + 3e24J

2 − 2e2J
.

(97)

Conversely, the transition dynamics from a deactivated to an activated bond, facilitated by
the non-commutative nature of the matrices S−1

1 S0 and S−1
0 S1, introduce additional weights:

Ŵ ′[NB(1) → B] = e10J − e12J +
√

e20J + 3e24J

2
√

e20J + 3e24J
,

Ŵ ′[NB(2) → B] = e12J − e10J +
√

e20J + 3e24J

2
√

e20J + 3e24J
.

(98)

In the context of a finite lattice without periodic boundary conditions, additional consider-
ations arise for Boltzmann weights associated with boundary bonds. Specifically, activated or
deactivated bonds located at the boundaries of the lattice contribute distinct weights, derived
from the matrices MfirstS0,1 and S−1

0,1Mlast.

Ŵ ′[Mfirst → NB(1)] =
e−11J

(
e10J + e12J −

√
e20J + 3e24J

)
√

2
√

−e−J + eJ
,

Ŵ ′[Mfirst → NB(2)] =
e−11J

(
e10J + e12J +

√
e20J + 3e24J

)
√

2
√

−e−J + eJ
,

Ŵ ′[Mfirst → B] =
√

2e2J
√

−e−J + eJ

−1 + e2J
,

Ŵ ′[NB(1) → Mlast] =
√

−e−J + eJ
(
e10J + e12J −

√
e20J + 3e24J

)
2
√

2
√

e20J + 3e24J
,

Ŵ ′[NB(2) → Mlast] =
√

−e−J + eJ
(
e10J + e12J +

√
e20J + 3e24J

)
2
√

2
√

e20J + 3e24J
,

Ŵ ′[B → Mlast] = eJ

√
2
√

−e−J + eJ
.

(99)

To calculate the weight of any given configuration of activated and deactivated bonds within
a renormalized lattice, one can employ the scalar Boltzmann weights derived above. Consider a
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5 Exact Renormalization Group Transformation

specific configuration where two activated bonds are positioned at the boundaries of the lattice,
with a deactivated bond of either type (1) or type (2) situated between them. The weight of such
a configuration, denoted as Ŵ ′config, can be expressed as the product of the weights associated
with each transition and the boundary conditions.

Ŵ ′config = Ŵ ′[Mfirst → B] Ŵ ′1 Ŵ ′[B → NB(1)] Ŵ ′
0

′(1)
Ŵ ′[NB(1) → B] Ŵ ′

1 Ŵ ′[B → Mlast]

+Ŵ ′[Mfirst → B] Ŵ ′1 Ŵ ′[B → NB(2)] Ŵ ′
0

′(2)
Ŵ ′[NB(2) → B] Ŵ ′

1 Ŵ ′[B → Mlast] (100)

where Ŵ ′[B → NB(1)] represents the weight for transitioning from an activated bond to a
deactivated bond of type (1), and Ŵ ′[NB(1) → B] denotes the weight for transitioning from
a deactivated bond of type (1) back to an activated bond. Similarly, Ŵ ′[B → NB(2)] and
Ŵ ′[NB(2) → B] correspond to the weights for transitions involving a deactivated bond of type
(2). In the above considerations, Ŵ ′[Mfirst → B] and Ŵ ′[B → Mlast] are the weights associated
with an activated bond at the boundaries. It is important to note that the boundary weights
should be defined based on the specific boundary conditions and interactions at the lattice
edges. This approach allows for the systematic calculation of the weights for any conceivable
arrangement of activated and deactivated bonds on the renormalized lattice, thereby facilitat-
ing a comprehensive analysis of the system’s statistical properties. With the establishment of
scalar Boltzmann weights, it is now feasible to compute the weights of any conceivable con-
figuration of activated and deactivated bonds within the renormalized lattice. This allows for
the computation of the system’s partition function, denoted as Z ′, in its renormalized form.
The equivalence of the partition function of the renormalized system Z ′ to that of the original
Ising model Z underscores the correctness of the renormalization procedure and the derived
Boltzmann weights Ŵ ′. This equivalence, Z ′ = Z, asserts that the renormalization step retains
the essential thermodynamic quantities and phase behavior of the original system, thereby
validating the computed weights.

5.3.1 Iterations in Cluster-Inspired Renormalization

The subsequent question is whether an additional renormalization step can be executed utilizing
the same cluster-inspired technique as in the initial step, aiming to determine the Boltzmann
weights for the further renormalized lattice L′′. This necessitates the exploration of the con-
figurations of activated and deactivated bonds of types (1) and (2) on the lattice L′. It is
understood that an activated bond may precede a deactivated bond of either type (1) or type
(2), and conversely. Moreover, considering the product of the diagonal matrices D

(1)
0 and D

(2)
0 ,

corresponding to the first and second eigenvalues of a deactivated bond, is zero (D(1)
0 D

(2)
0 = 0),

it is deduced that a deactivated bond of type (1) cannot connect with a deactivated bond of
type (2). This reduces the viable bond combinations on the renormalized lattice.
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ŵ′1

ŵ′1

ŵ′1

ŵ′1

ŵ′(1)
0

ŵ′(1)
0

ŵ′(2)
0

ŵ′(2)
0

Figure 14: Image of all potential configurations involving activated and deactivated bonds. The
activated bond is denoted by a red (black) line, while deactivated bonds are differ-
entiated by color: yellow (white) for type (1) and violet (dotted) for type (2).

Similar to the initial renormalization step, the area to blocking in the subsequent step is
also triangular. However, the presence of two types of deactivated bonds introduces a broader
array of combinations of kernels and Ising bonds within the blocking triangles. When A = 0,
the blocking triangles could manifest themselves in four distinct combinations during the first
renormalization step. In contrast, the second step accommodates six different combinations,
because of the two types of deactivated bonds. Each configuration and its corresponding weight
are show in Figure 15.

Ω1

Ŵ ′(1)
0

Ω2

Ŵ ′(1)
0

Ω3

Ŵ ′(2)
0

Ω4

Ŵ ′(2)
0

Ω5

1
2Ŵ ′1

Ω6

1
2Ŵ ′1

(101)

Figure 15: Boltzmann weights for all possible configurations Ω1...6 within a blocking area, con-
sidering both activated and deactivated bonds, during the second renormalization
step. The green (grey) lines indicate the kernel bonds. Yellow (white) and violet
(dotted) lines represent deactivated bonds of types (1) and (2), respectively, while
the red (black) line signifies an activated bond.

Given that A = 0, the Boltzmann weight for kernel-bonds is assigned a value of 1
2 . It is

crucial to incorporate the factor 2 1
2 nc−1, where nc signifies the number of clusters within the

blocking triangle. One factor of 2 is omitted as it is already accounted for in eq.( 18) for the
computation of the partition function. In alignment with the approach adopted in the initial
renormalization step, the transfer matrix method is employed to determine the new Boltzmann
weights during the second renormalization step. As shown in Figure 15, there exist six distinct
blocking triangle weights, resulting in 6 × 6 possible combinations of two adjacent triangles.
Consequently, this yields a 6 × 6 transfer matrix. The transfer matrix M ′

b, corresponding to an
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5 Exact Renormalization Group Transformation

activated bond on the second renormalized lattice L′′ and derived from the combination of two
triangle blocking areas that result in a bond, is structured as follows:

M ′
b =



0 0 0 0 0 0
e−J 0

√
e−J

√
sinh J

√
e−J

√
sinh J 0 0√

e−J
√

sinh J 0 sinh J sinh J 0 0√
e−J

√
sinh J 0 sinh J sinh J 0 0

0 0 0 0 0 0
0 0 0 0 0 0


(102)

To compute the matrix W ′′
1 , which contains the Boltzmann weights for all conceivable con-

figurations of an activated bond on the lattice L′′, it is necessary to multiply the matrix M ′
b

by the scalar weight Ŵ ′1 of an activated bond linking two blocking triangles on the lattice L′.
Additionally, the weights Ŵ ′[B → NB(1),(2)] and Ŵ ′[NB(1),(2) → B] from eqs.(97) and (98),
which are needed when an activated bond transitions to a deactivated bond or vice versa, must
also be considered. With these considerations, the Boltzmann weight of an activated bond on
the lattice L′′, originating from two triangular blocking areas W ′′

1 [Ωi, Ωj], can be calculated as
follows:

W ′′1[Ωi, Ωj] = Ŵ ′1 M ′bij Ŵ ′[Ωi → B] Ŵ ′[B → Ωj]. (103)

Here, M ′
bij

represents the (i, j) element of the transformation matrix, and Ŵ ′[Ωi → B]
and Ŵ ′[B → Ωj] are the weights mentioned earlier for scenarios where an activated bond
interfaces with a deactivated bond as described in eqs. (97) and (98). It should be noted
that, if an activated bond within a blocking area were to connect with another activated bond
between two blocking areas, such as Ŵ ′[Ω5 → B], this weight would be assigned a value of one,
Ŵ ′[Ω5 → B] = 1. The transfer matrix M ′

nb, which contains all potential configurations where
no bond is activated on the lattice L′′ if a bond between two blocking triangles is active, is
defined as follows:

M ′
nb =



e−J e−J
√

e−J
√

sinh J
√

e−J
√

sinh J 0 0
0 e−J 0 0 0 0
0

√
e−J

√
sinh J 0 0 0 0

0
√

e−J
√

sinh J 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(104)

Given the constraint that a deactivated bond can only interface with another deactivated
bond of the same type, it becomes necessary to introduce two additional transfer matrices. The
transfer matrix M ′(1)

nb is defined for scenarios where a deactivated bond of type (1) connects two
blocking areas:

M ′(1)
nb =



e−J e−J 0 0 0 0
e−J e−J 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(105)
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Similarly, the transfer matrix M ′(2)
nb is introduced to account for situations where a deactivated

bond of type (2) connects two blocking areas. This distinction between the two types of deacti-
vated bonds is crucial for accurately modeling the interactions within the renormalized lattice
L′′.

M ′(2)
nb =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 sinh J sinh J 0 0
0 0 sinh J sinh J 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(106)

To determine the entries W ′′
0 [Ωi, Ωj] of the matrix W ′′

0 , which contains the Boltzmann weights
for all combinations contributing to a deactivated bond between two spins on the lattice L′′,
the calculation can be performed as follows:

W ′′
0 [Ωi, Ωj] = 1

2Ŵ ′1 M ′
nbij

Ŵ ′[Ωi → B] Ŵ ′[B → Ωj]

+ Ŵ ′(1)
0 M ′(1)

nbij
Ŵ ′[Ωi → NB(1)] Ŵ ′[NB(1) → Ωj]

+ Ŵ ′(2)
0 M ′(2)

nbij
Ŵ ′[Ωi → NB(2)] Ŵ ′[NB(2) → Ωj]. (107)

By diagonalizing the matrix S ′
1W

′′
1 S ′−1

1 = D′
1, it is observed that the matrix for the activated

bonds once again has a single non-zero eigenvalue. This indicates the feasibility of extracting
scalar Boltzmann weights for an activated bond directly from D′

1. Conversely, examining the
matrix W ′′

0 reveals that it possesses three non-zero eigenvalues, implying the existence of three
types of deactivated bonds on the lattice L′′, as opposed to the two types encountered on the
lattice L′. Consequently, it becomes necessary to derive three scalar Boltzmann weights from
the configurations where an activated bond is connected to a deactivated bond, as represented
by S ′

1W
′′
1 S ′−1

1 S ′
0W

′′
0 S ′−1

0 , and vice versa for the scenarios where a deactivated bond connects to
an activated bond. This realization underscores the potential for iterative application of the
cluster-inspired renormalization group technique, albeit with a caution: each iteration increases
the complexity of the method. Specifically, the transfer matrix requisite for conducting the third
renormalization step would expand to an 8 × 8 matrix, thereby escalating the computational
effort. Due to this increase in complexity, further iterations beyond this point are deemed
impractical and are thus not pursued.
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6 Parametrization of the Two-Dimensional Fixed Point
Hamilton Function.

The cluster-inspired renormalization group transformation aggregates parallel spins into a clus-
ter. This characteristic facilitates the possibility that, after several renormalization iterations,
spins that are not immediate neighbors may be within the same cluster, thereby introducing
interactions beyond nearest-neighbor interactions. Consequently, it is logical to parameterize
the Hamiltonian fixed point in accordance with this observation. To achieve this, we introduce
a graph ζ, representing a collection of proximal spins on the lattice. All graphs, along with their
translations, reflections, and rotations, are categorized within the same equivalence class ζ ∈ ζ̂.
This classification implies that lattices exhibiting high symmetry are preferable, as a greater
number of graphs will be grouped into the same equivalence class, enhancing the simplifica-
tion of the model. In light of this, a triangular lattice, characterized by a 60-degree rotational
symmetry, is selected for subsequent discussion. We then define a delta function δζ [s], which
assumes a value of one if all spins sζ on the graph ζ are aligned (parallel), and zero otherwise.

δζ [s] =

1, if sx = sζ , x ∈ ζ, sζ = ±1
0, otherwise.

(108)

So that the fixed point Hamiltonian can be parameterised as

e−βH∗ =
∏
ζ̂

∏
ζ∈ζ̂

W
δζ [s]
ζ̂

(109)

Where Wζ̂ represents the Boltzmann weights corresponding to the graphs within the equiva-
lence class ζ̂. Additionally, it is observed that the Boltzmann weight is not one (Wζ̂ ̸= 1) if and
only if all spins on the graph are aligned, as indicated by the condition δζ [s] = 1. An example
of a graph is presented in figure 16.

Figure 16: The graph W13 is activated with four parallel spins, represented by four bold black
points.

For practical reasons, the graphs must be restricted to a feasible number of spins. Given that
the fixed point Hamiltonian is presumed to be local, this constraint does not impose significant
limitations due to the diminished contribution of graphs containing a larger number of spins
to the overall weight of a spin configuration and, consequently, to the partition function of the
system. Hence, for all considered graphs, the separation between spins is restricted to no more
than two lattice spacing. On the triangular lattice, the two-point graphs have the fallowing
geometry:
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W1 W2 W3

Similarly, the three-point graphs considered within the constraint of a maximum relative
distance of two lattice spacings between spins are:

W4 W5 W6
W7 W8

Likewise, for the four-point graphs:

W9
W10 W11 W12 W13

Adopting the same approach, the scope could be extended to include 5-point, 6-point, or even
larger graphs. It is crucial to recognize that imposing a limit on the size of the graphs effectively
truncates the fixed point Hamiltonian. By incorporating higher-order n-point functions, the
approximation of the fixed point progressively improves.
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7 Finite-Volume Approximation of the Fixed Point
Given that the fixed point Hamiltonian is inherently local, its finite-volume approximations yield
significant insights into the characteristics of the fixed point Hamiltonian within an infinitely
extensive lattice framework. The triangular lattice, characterized by its hexagonal symmetry (
a 60-degree rotational invariance), is particularly well-suited for finite-volume analysis due to
this high rotation symmetry.
For this study, a finite lattice configured in a hexagonal shape with periodic boundary conditions
was employed. This lattice configuration comprises 12 Ising spins on a finer lattice, which,
through a blocking transformation characterized by a blocking factor of

√
3, coarsens into a

lattice with 4 Ising spins. This transformation and the resulting lattice structure are shown in
Figure 17.

Figure 17: Finite hexagon-shaped lattice with periodic boundary conditions. Twelve fine spins
(green (grey) dots) were put on the lattice. After one renormalization step with factor√

3 blocking, tree spins are blocked together to one coarse spin (red rectangle).

The implementation of periodic boundary conditions is such that the upper-left edge of the
hexagon corresponds periodically to the lower-right edge, the upper-right edge to the lower-left,
and the upper horizontal edge to the lower horizontal edge. These boundary conditions enable
the construction of an extended lattice by lining up multiple hexagonal units.
To analytically derive the equations defining the fixed point Hamiltonian, as specified in eq.
(109), it is necessary to enumerate all possible spin configurations on the coarse lattice. Given
the Z2 symmetry intrinsic to the Ising model, the distinct configurations include those where
all spins are aligned, three spins are aligned with one opposing, and configurations with an
equal number of up and down spins. These considerations lead to the following conditions:

e−βH1 = e−βh(↑,↑,↑,↑)

e−βH2 = e−βh(↓,↑,↑,↑)

e−βH3 = e−βh(↓,↓,↑,↑) (110)

Here, e−βH1 represents the configurations on the finer lattice that, after one renormalization
step, lead to the coarse lattice configuration where all spins are aligned upwards, denoted by
e−βh(↑,↑,↑,↑). The terms e−βH2 and e−βH3 are defined analogously for their respective configura-
tions.

To compute the Boltzmann weights for the fine configurations that correspond to one of the
three distinct configurations on the coarse lattice, it’s necessary to account for all 212 = 4096
configurations on the fine lattice. This task is feasible using a standard computer. However, the
next larger hexagon-shaped lattice in our framework would consist of 27 fine spins, leading to
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7 Finite-Volume Approximation of the Fixed Point

227 = 134, 217, 728 configurations. Evaluating such a vast number of configurations exceeds the
capabilities of an average computer available for carrying out the calculations for this thesis.

The truncation of the fixed point Hamiltonian function is characterized by various n-point
graphs as discussed in Chapter 6. Therefore, one must evaluate all possible combinations of
n-point graph Boltzmann weights e−βH for a given fine lattice spin configuration, which results
in a corresponding combination of n-point graphs on the coarse lattice e−βh. This necessitates
distinguishing between the n-point graphs on the coarse lattice. Due to the periodicity of the
fine lattice under shifts by 2

√
3a in directions orthogonal to the hexagon edges, the coarse

lattice exhibits periodicity under shifts by 2a′, where a′ =
√

3a. Among all 2-point graphs, only
the W1 graph needs to be considered, as the others are indistinguishable from it within this
context. The W2 graph does not qualify as a true 2-point graph since, under the 2a′ periodicity,
it decomposes into a 1-point graph. Likewise, the W3 graph cannot be distinguished from W1.

W3 = W1

The 3-point graphs W5 and W8 decomposes into 2-point graphs. The graphs W6 and W7 can
not be distinguished from W4 because of the periodicity of translation shifts by 2a′.

W6 = W4 W7 = W4

In the analysis of 4-point graphs, only W9 requires consideration. This is because W10 and
W11 decompose into 3-point graphs, while W13 reduces to a 2-point graph. Furthermore, W12 is
found to be in the same equivalence class as W9 when considering shifts of 2a′, making it redun-
dant for separate analysis. This selection process is pivotal for simplifying the computational
workload, ensuring that only the most representative and non-redundant graphs are evaluated
to characterize the fixed point Hamiltonian effectively.

W12 = W9

Given that there are only 4 coarse spins, the consideration of n-point graphs is limited
to those with n no greater than 4. Consequently, the Boltzmann weights of the fine lattice
configurations denoted as e−βH, and those on the coarse lattice, represented by e−βh, can be
effectively described as functions of the graph weights W1, W4, and W9 only.
It is important to recognize that the hexagonal periodicity inherent to the lattice structure is,
in essence, equivalent to parallelogram periodicity. This observation simplifies the calculation
of Boltzmann weights by allowing the use of a more straightforward geometric representation
without losing the essential topological characteristics of the hexagonal lattice.
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7 Finite-Volume Approximation of the Fixed Point

⇒

Figure 18: The hexagonal-shaped lattice can be cut along the thick red(black) lines and re-
assembled into an equivalent parallelogram-shaped lattice.

This inherent property substantially simplifies the enumeration of spins, thereby improving
the identification of nearest-neighbors for each spin. Moreover, defining the blocking areas is
more straightforward in a lattice with a parallelogram geometry. Consequently, the hexagon-
shaped lattice shown in figure 17 can be effectively reformulated as an equivalent parallelogram-
shaped lattice, as illustrated in figure 19.

Figure 19: Finite volume lattice in parallelogram-shape. This lattice is equivalent to the
hexagon-shaped lattice of figure 17.

It is crucial to recognize that the blocking kernel breaks the 30◦ rotational symmetry of
the lattice, reducing it to a 120◦ symmetry. This arises from the orientation of the blocking
area, which can be either a downward oriented triangle, as illustrated in Figure 17, or upward
oriented. Post-blocking, the resultant lattice regains a 30◦ rotational symmetry. The transfor-
mation from a fine to a coarse configuration employs the blocking kernel T (sx; x ∈ Ωx′ , s′

x′) =
A + 1−2A

N

∑
x∈Ωx′ δsx,s′

x′
, initially introduced in eq.(75).

The contribution of the blocking kernel to the total Boltzmann weight of a coarse configuration
depends on the spin arrangement, as delineated by the following values:
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↑ ↑

↑

↑
T (↑↑↑, ↑) = A +

(1 − 2A

3

)
3 = 1 − A

↑ ↑

↑

↓
T (↑↑↑, ↓) = A +

(1 − 2A

3

)
0 = A

↑ ↑

↓

↑
T (↑↑↓, ↑) = A +

(1 − 2A

3

)
2 = 2

3 − A

3

↑ ↑

↓

↓
T (↑↑↓, ↓) = A +

(1 − 2A

3

)
1 = 1

3 + A

3 (111)

The central arrow in the shown triangles signifies the coarse spin resultant from the blocking
process. The factor a fine lattice configuration acquires from the blocking kernel is expressed
as:

An0

(1
3 − A

3

)n1 (2
3 − A

3

)n2

(1 − A)n3

where ni, i = 0, 1, 2, 3 denotes the number of blocks with i fine spins matching the new coarse
spin.
The Boltzmann weight of a given configuration, parameterized by the n-point graph weights
W1, W4, and W9, following a renormalization step, is:

e−βHconf. = An0

(1
3 − A

3

)n1 (2
3 − A

3

)n2

(1 − A)n3 W m1
1 W m4

4 W m9
9 , (112)

where mj, j = 1, 4, 9 represents the number of occurrence for the graphs Wj on the fine spin
configuration.
The same n-point graphs define the Boltzmann weights on the coarse lattice e−βh, yet only
three distinct Boltzmann weights emerge due to the coarse lattice’s four-spin configuration:

e−βh(↑,↑,↑,↑) = 28W ′12
1 W ′8

4W
′12
9

e−βh(↑,↑,↑,↓) = 28W ′6
1W

′2
4

e−βh(↑,↑,↓,↓) = 28W ′4
1 (113)

To ensure consistency between the partition functions expressed in terms of the graph weights
Wi and their transformed counterparts W ′

i, a factor of 28 has to be included. This adjustment
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7 Finite-Volume Approximation of the Fixed Point

is crucial in scenarios where all graph weights are one, ensuring that the partition functions
remain equivalent under such conditions. The mathematical representation of this equivalence
is given by:

Z(W1, W4, W9) = 212 if Wi = 1, i = 2, 4, 9 (114)
Z(W ′

1, W ′
4, W ′

9) = 2824 = 212 if W ′
i = 1, i = 2, 4, 9 (115)

It is important to note that the inclusion of this factor is necessary solely due to the finite-
volume framework of the analysis. In the infinite volume limit, where the lattice size approaches
infinity, the necessity to include such a factor disappears; the lattice, despite being coarsened,
remains infinite, and the partition functions inherently align without the need for additional
adjustments.

The process of determining the fixed point condition equations involves anchoring the spin
values on the coarser lattice and subsequently computing the weights for all fine lattice config-
urations that correspond to the given coarse configuration, as defined by eq. (112). With this
approach the fixed point conditions of eq.( 110) can be determined. Note that for the fallowing
discussion the factor A of the blocking kernel is set to zero A = 0.
In the particular scenario where all spins on the coarse lattice are aligned, the corresponding
equation can be expressed as follows:

W 12
1

34 (555 + (W1W4)2(1080 + 852W9) + (W1W4)4(1188 + 384W9 + 762W 2
9 + 1512W 3

9 )

+ (W1W4)6(96 + 240W 2
9 + 72W 3

9 + 1728W 4
9 + 1296W 5

9 + 648W 6
9 )

+ (W1W4)8(48W 4
9 + 2232W 6

9 + 606W 8
9 + 1584W 7

9 ) + (W1W4)10(288W 9
9 + 720W 10

9 + 1440W 11
9 )

+ (W1W4)12(840W 12
9 + 648W 14

9 ) + 1188(W1W4)14W 17
9 + 648(W1W4)18W 24

9

+ 81(W1W4)24W 36
9 ) = 28W ′12

1 W ′8
4W

′12
9 .

(116)
The equation when three spins are parallel and one is anti-parallel reads:

W 12
1

34 (606 + (W1W4)2(1458 + 1092W9) + (W1W4)4(1458 + 696W9 + 912W 2
9 + 1458W 3

9 )

+ (W1W4)6(39 + 327W 2
9 + 252W 3

9 + 3618W 4
9 + 1134W 5

9 + 486W 6
9 )

+ (W1W4)8(60W 4
9 + 3276W 6

9 + 738W 7
9 + 528W 8

9 ) + (W1W4)10(414W 9
9 + 387W 10

9 + 774W 11
9 )

+ (W1W4)12(402W 12
9 + 162W 14

9 ) + 378(W1W4)14W 17
9 + 81(W1W4)18W 24

9 ) = 28W ′6
1W

′2
4.

(117)
In scenarios where two spins on the coarse lattice differ from the other two, the equation is

expressed as:

W 12
1

34 (627 + (W1W4)2(1584 + 1176W9) + (W1W4)4(1548 + 888W9 + 960W 2
9 + 1440W 3

9 )

+ (W1W4)6(24 + 456W 2
9 + 288W 3

9 + 4320W 4
9 + 972W 5

9 + 432W 6
9 )

+ (W1W4)8(147W 4
9 + 3636W 6

9 + 432W 7
9 + 552W 8

9 ) + (W1W4)10(324W 9
9 + 216W 10

9 + 432W 11
9 )

+ (W1W4)12(156W 12
9 + 54W 14

9 ) + 72(W1W4)14W 17
9 ) = 28W ′4

1.
(118)

This results in a highly non-linear system of equations. A further consideration would be to
use the 4-point graph W12 instead of W9. This is because the equivalence class of W12 contains
two graphs.
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In comparison with the W9 graphs, which contain three different graphs in their equivalence
class.

Because of this, the W12 graph has higher symmetry and may be preferred by the system.
The system of equations referred to in eq.( 110), considering the W12 graph instead of W9,
reads:

W 12
1

34 (24 + 96W 2
12 + 144W 4

12 + 240W 5
12 + 51W 8

12 + (W1W4)2(1080 + 624W 3
12 + 228W 4

12)

+ (W1W4)4(1188 + 384W12 + 504W 2
12 + 786W 4

12 + 984W 5
12)

+ (W1W4)6(168 + 816W12 + 936W 2
12 + 264W 3

12 + 1320W 4
12 + 288W 7

12 + 288W 10
12 )

+ (W1W4)8(144 + 384W12 + 660W 2
12 + 1488W 3

12 + 210W 4
12 + 1584W 6

12)
+ (W1W4)10(1008W 4

12 + 1440W 7
12) + (W1W4)12(408W 6

12 + 432W 8
12 + 648W 12

12 )
+ (W1W4)14(1188W 10

12 ) + 648(W1W4)18W 16
12 + 81(W1W4)24W 24

12 ) = 28W ′12
1 W ′8

4W
′8
12

W 12
1

34 (30 + 120W 2
12 + 180W 4

12 + 246W 5
12 + 30W 8

12 + (W1W4)2(1458 + 726W 3
12 + 366W 4

12)

+ (W1W4)4(1458 + 696W12 + 738W 2
12 + 888W 4

12 + 744W 5
12)

+ (W1W4)6(291 + 1452W12 + 1413W 2
12 + 708W 3

12 + 1623W 4
12 + 252W 7

12 + 117W 10
12 )

+ (W1W4)8(396 + 642W12 + 1122W 2
12 + 1536W 3

12 + 168W 4
12 + 738W 6

12)
+ (W1W4)10(801 + 774W 7

12) + (W1W4)12(294W 6
12 + 108W 8

12 + 162W 12
12 ) + 378(W1W4)14W 10

12

+ 81(W1W4)18W 16
12 ) = 28W ′6

1W
′2
4

W 12
1

34 (33 + 132W 2
12 + 198W 4

12 + 240W 5
12 + 24W 8

12 + (W1W4)2(1584 + 768W 3
12 + 408W 4

12)

+ (W1W4)4(1548 + 888W12 + 792W 2
12 + 984W 4

12 + 624W 5
12)

+ (W1W4)6(312 + 1680W12 + 1692W 2
12 + 912W 3

12 + 1608W 4
12 + 216W 7

12 + 72W 10
12 )

+ (W1W4)8(639 + 960W12 + 1200W 2
12 + 1344W 3

12 + 192W 4
12 + 432W 6

12)
+ (W1W4)10(540W 4

12 + 432W 7
12) + (W1W4)12(120W 6

12 + 36W 8
12 + 54W 12

12 )
+ 72(W1W4)14W 10

12 ) = 28W ′4
1

(119)
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In the analysis of W9, no non-trivial solutions with positive weights were identified, except
for the trivial case where all weights are one. For W12, beyond the trivial fixed point, a solution
given by W1 = 0.232335, W4 = 27.7693, W12 = 0.132717 was discovered. However, this solution
presents a challenge, as the value of W1 is less than one, which is inconsistent with ferromagnetic
behavior. These findings suggest that the chosen finite volume consideration may be insufficient
to accurately approximate the fixed point. This limitation might stem from the renormalized
lattice configuration, which comprises only four spins arranged with a periodicity of two lattice
spacings. This setup raises uncertainties regarding the possible number of distinct graphs that
can be accommodated, given that different graphs may share spins but differ in the links
connecting the spins.
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8 Conclusion
After a brief introduction to the Ising model and its properties, followed by an introduction
to the renormalization group and its characteristics, a general overview of the renormalization
of the Ising model is provided. Then in Chapter 5, the Ising model was subject to renormal-
ization via the renormalization group decimation technique. This approach yielded two central
equations: one describing the evolution of the nearest-neighbor interaction coupling, and the
other characterizing the magnetic field’s behavior. These equations elucidate the trajectory of
the couplings across renormalization steps. Subsequently, the renormalization group blocking
method was employed to devise a blocking scheme in the presence of an external magnetic field.
The selected blocking kernel was formulated to permit the orientation of the renormalized spins
not to align with the original spins within the blocking domain. This framework enabled the
determination of the coupling flows at each renormalization stage, demonstrating a consistent
halving of the correlation length after each iteration.

Following the exploration of the established renormalization group decimation and blocking
techniques, a novel cluster-inspired renormalization scheme for the Ising model, expressed in
the cluster representation, was developed. Using the transfer matrix method, it was possible
to compute matrices encapsulating the Boltzmann weights associated with both activated and
deactivated bonds in the renormalized system. This led to the formulation of new scalar Boltz-
mann weights, distinct for activated bonds and two types of deactivated bonds, facilitating
the reconstruction of a local cluster representation Hamiltonian for the renormalized lattice.
This approach allowed to determine the change of the original Boltzmann weights transforming
under the chosen blocking kernel. Additionally, a method was devised to iteratively apply the
renormalization process, successfully executing one iteration. However, it was observed that the
complexity of the system escalated with each renormalization step. This escalation is attributed
to the increasing number of eigenvalues corresponding to the deactivated bond matrix, which,
in turn, results in a diversification of deactivated bond types. Consequently, also increasing the
number of scalar Boltzmann weights.

In Chapter 6, a method for the parametrization of the two-dimensional fixed point was es-
tablished. Assuming the fixed point Hamiltonian to be local and the decay of long-distance
interactions to be exponential, a strategy was devised to parametrize the Hamiltonian of the
fixed-point using n-point graphs. This approach yielded a sufficient variety of unique graphs,
not confined to the same equivalence class, thus facilitating a finite-volume approximation of
the fixed point on a triangular lattice, as further detailed in Chapter 7. The computation of
the blocking kernel weights and the selection of a set of indistinguishable n-point graphs on the
finite lattice led to the formulation of a system of highly nonlinear equations governing the fixed
point Boltzmann weights. These equations allowed for the identification of the trivial fixed point.

Future work may extend the one-dimensional cluster-inspired blocking to two dimensions,
examining its impact on the model’s iterative dynamics and the potential increase of the number
of different bond types. Additionally, the effect of employing larger starting lattices on the finite-
volume approximation of the fixed point warrants investigation. The current study utilized
a fine lattice comprising 12 spins, resulting in a coarse lattice with 4 spins after factor

√
3

blocking. The high translational symmetry observed due to the limited spin count on the fine
lattice led to the decomposition of many n-point functions. Exploring scenarios with larger
fine lattices could diminish finite-volume effects and provide new insights. For instance, the
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next smaller hexagon-shaped lattice contains 9 coarse spins, scaling to a fine lattice with 27
spins, presenting 134′217′728 possible spin configurations, rendering analytical computation
of condition equations infeasible. Thus, numerical techniques, such as Monte Carlo methods,
may prove essential for deeper insights into the approximate fixed point Hamiltonian, with
the analytical cases serving as benchmarks for validating the correctness of the selected Monte
Carlo algorithms.
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